

Hitting Sets for Algebraic Models
Constructions and Consequences

A Thesis

submitted to the

Tata Institute of Fundamental Research, Mumbai

for the degree of Doctor of Philosophy in

Computer Science

by

Anamay Gurunath Tengse

Tata Institute of Fundamental Research, Mumbai

June, 2021

DECLARATION

This thesis, titled “Hitting Sets for Algebraic Models: Constructions and Consequences" is
a presentation of my original research work. Whatever contributions of others are involved,
every effort is made to indicate this clearly, with due reference to the literature, and acknowl-
edgement of collaborative research and discussions.

The work was done under the guidance of Dr. Ramprasad Saptharishi at the Tata Institute
of Fundamental Research, Mumbai.

Anamay G. Tengse

In my capacity as supervisor of the candidate’s thesis, I certify that the above statements are
true to the best of my knowledge.

Ramprasad Saptharishi

Date:

i

Acknowledgements

While I was writing this thesis, everyone in the world was struggling with the COVID19
pandemic in some way or the other. I am deeply grateful to the doctors, nurses, and all
essential workers, who faced the worst of this crisis to keep the rest of us safe and healthy.
A million thanks to each one of them.

I want to start by thanking all the people unknown to me, whose work makes the various
services and facilities accessible to students like me, that I have used for carrying out my
work, academic and otherwise. I also want to thank all the people who have contributed
in recording, compiling, maintaining and broadcasting, all the scientific and mathematical
literature that has helped my research till now.

I have been fortunate to have enjoyed tremendous support, inspiration and knowledge
from all the wonderful people who have graced me with their friendship. Without the friends
I made at TIFR, my time here would have been quite dull and dark. There are numerous
conversations which I recall having with them, that have helped me correct my course, in
research and in life. At the same time, had it not been for the solid backing that I received
from my friends outside TIFR, I would not have even dreamed to reach a place like TIFR! I
owe a lot of what I have to all these amazing people.

My love for research and teaching is a large part of why I chose to pursue a PhD. All of
that comes from studying from some of the most dedicated and skilled teachers who have
taught me; I shall always aim to be as earnest as them in whatever I do. I can never forget
the guidance and support I received from all the teachers from S. S. Samiti’s school at Kavale,
who helped me restore my confidence in my abilities. After graduating from Kavale, my
interactions with the members of faculty at the Goa College of Engineering, and IIT Bombay
were instrumental in leading me to pursue a PhD.

I had joined TIFR with little understanding of research in theoretical CS; a significant
portion of what I now know has come from my time here. The quality of teaching and
exposition at STCS-TIFR is something that I have not seen anywhere else. I hope that one
day I would able to express ideas like some of the faculty here. Even beyond the fabulous
lectures, the numerous formal and informal interactions with all the people in STCS and TIFR
in general, have been extremely pleasant and educational. I will surely keep coming back to
TIFR and STCS whenever possible in search of more such interactions.

I have been fortunate to receive useful advice from many experts in the area. In particular,
I have had the good fortune of working closely with Mrinal, and on many occasions, I have

ii

gained several valuable insights from him about mathematics, research and more, that have
greatly enhanced my understanding.

It has also been my privilege to have some amazing people in my family and social circles.
I always found help whenever I needed it, just like the reassuring call with my cousin Prasad
(Paresh) that led me to choose computer engineering to begin with. I spent almost all of
my childhood being the beloved younger brother of Vaishnavi, Aparna and Rekha. I doubt
anything else will ever give me that much joy1.

Having Ramprasad as my PhD advisor is perhaps the best thing that has happened to me
in my academic life. After my first year at TIFR, I had thought that algebra was “not for me”,
and had asked Jaikumar about how I should move forward. In addition to his timeless and
sound advice that I should ‘keep an open mind’, the key reason that I even dared to explore
algebraic complexity, was my semester-long experience of working with Ramprasad. I have
always felt very comfortable sharing my ideas with him, even though they have turned out
to be crazy or stupid most of the times. His never-ending support has greatly helped me
manage even the most testing of times, just like the day of my thesis defence! I hope that my
work lives up to the efforts that he has put in, and I truly wish that every PhD student gets
an advisor like him.

Prerona is perhaps the simplest and the most honest person that I have ever known, and
I have been extremely fortunate to have met her. The time I spent with her (and other “cool
people”) at TIFR was the reason I always felt at home here, during all these years. Just talking
to her has made everything easy to deal with and get through; I hope to enjoy this privilege
in the years to come.

In addition to all of the above, what gives me a clear advantage over almost everyone
else, is being born to my parents. My father’s love for mathematics was what introduced
me to solving puzzles at a very young age, and led me to like computer programming and
eventually computer science. My mother’s belief in me (which is way more than my own),
has given me the energy to keep going through all the inconveniences, big and small. I have
happily inherited a strong affinity for music, literature and art from them, which has greatly
enriched my life. My father’s principled approach to life and my mother’s kindness continue
to inspire me every day, to become a better version of myself, in every aspect. Quite literally,
I would not have reached anywhere without their love and support, and it is to them that I
dedicate my thesis.

1Other than proving cool theorems, of course. :-)

iii

To Aai and Baba,
whose love and support makes every goal look achievable.

iv

Contents

1 Introduction 1
1.1 Easy and Hard Polynomials . 2
1.2 Polynomial Identity Testing . 4

1.2.1 Hitting Sets . 5
1.3 Background . 5

1.3.1 Determinants and Permanents . 5
1.3.2 Depth Reduction Results . 7
1.3.3 Hardness - Randomness Connections . 9

1.4 Current Status . 10
1.4.1 Lower Bounds . 10
1.4.2 Hitting Sets . 13
1.4.3 Analysing Lower Bound Techniques . 13

1.5 Contributions of the thesis . 15
1.5.1 Hitting Sets for UPT circuits . 15
1.5.2 Isolating Log-variate Depth-3-Powering Circuits 16
1.5.3 Bootstrapping Hitting Sets . 17
1.5.4 Algebraically Natural Proofs . 18

1.6 Organization of the Thesis . 20

2 Preliminaries 21
2.1 Basic Notation . 21
2.2 Computing Polynomials . 22

2.2.1 Some Important Polynomial Families . 23
2.3 Hitting Set Basics . 23

2.3.1 Hitting Sets and Hitting Set Generators . 24
2.3.2 Designing Hitting Set Generators . 25

3 Hitting Sets for Circuits with Restricted Parse Trees 29
3.1 Non-commutative and Unique Parse Tree (UPT) circuits 29

3.1.1 Polynomial identity testing . 30
3.1.2 Results in this chapter . 31
3.1.3 Proof ideas . 32

3.2 Background . 33
3.2.1 Basic definitions . 33
3.2.2 Basic lemmas . 35

3.3 Depth reduction for UPT circuits . 35
3.3.1 UPT infixion-circuits . 36
3.3.2 UPT circuits of constant width . 40

3.4 Separating ROABPs and UPT circuits . 40
3.4.1 The polynomial . 40

3.5 Hitting sets for non-commutative models . 41
3.5.1 Preliminaries for PIT . 42
3.5.2 Hitting sets for UPT set-multilinear circuits 43
3.5.3 Poly-sized hitting sets for constant width UPT circuits 46

3.6 FewPT circuits . 46
3.6.1 Preliminaries . 46

3.7 Separating ABPs from UPT circuits . 48
3.8 Exponential lower bound under any shuffling . 50

3.8.1 The polynomial . 51
3.8.2 The lower bound . 51

3.9 Hitting sets for UPT circuits . 53
3.9.1 Commutative analogue of UPT circuits . 53
3.9.2 Constant width UPT circuits . 55

3.10 Hitting sets for FewPT circuits . 56
3.11 Finer analysis of constant width UPT circuits . 59

3.11.1 Constant width ABPs . 59
3.11.2 General non-commutative ABPs and formulas 60

4 Isolating Log-variate Polynomials 61
4.1 Introduction . 61

4.1.1 Isolating Weight Assignments . 62
4.1.2 Results in this chapter . 62
4.1.3 Proof Idea . 63
4.1.4 Related work . 63

4.2 Background . 64
4.3 Isolating Family for Structured Log-variate Polynomials 65
4.4 Discussion . 67

5 Near-optimal Bootstrapping of Hitting Sets for Algebraic Models 69
5.1 Bootstrapping of Hitting Sets . 69

5.1.1 Proof overview . 71
5.2 Preliminaries . 75

5.2.1 Combinatorial designs . 75

5.2.2 Hardness-randomness connections . 76
5.3 Bootstrapping Hitting Sets . 78

5.3.1 Proofs of the bootstrapping lemmas . 80
5.4 Algorithm for generating the hitting set . 83

6 On the Existence of Algebraically Natural Proofs 87
6.1 Introduction . 87

6.1.1 The Natural Proofs framework of Razborov and Rudich 88
6.1.2 Algebraically Natural Proofs . 88
6.1.3 Results in this chapter . 91
6.1.4 Discussion and relations to prior work . 93
6.1.5 An overview of the proof . 95

6.2 Some Background . 96
6.3 Constructible equations for VP over small finite fields 98
6.4 Constructible equations for VP with coefficients in {−1, 0, 1} 100
6.5 Equations for VNP . 103

6.5.1 VNP over Small Finite Fields . 103
6.5.2 Polynomials in VNP with Small Integer Coefficients 104

6.6 Discussion . 108

7 Future Directions 109
7.1 Questions about Structured Models . 109
7.2 Questions about the General Models . 110

1 | Introduction

A fundamental challenge in theoretical computer science is to understand what makes some
computational tasks harder than others. Formalizing and trying to answer this natural and seem-
ingly simple question has led to the vast area of research that we now call complexity theory:
the area that aims to determine the amount of resources like time, space and randomness,
required by various computational tasks.

Within complexity theory, if we restrict ourselves to the tasks that can be performed using
the basic arithmetic operations of addition and multiplication, we obtain the area of algebraic
complexity theory, which analyses the complexity of computing multivariate polynomials. Sev-
eral well known computational tasks can be naturally viewed as polynomials. For instance,
almost all the tasks concerning matrices like matrix multiplication, computing determinants
or adjoints etc., can be viewed as polynomials in the entries of the underlying matrices.

Perhaps the most natural way to judge the complexity of a polynomial is to pin down the
number of basic operations required to compute it on any given input. The models of algebraic
circuits and algebraic formulas formalise this intuition: they start with formal variables and
constants, and inductively build the required polynomial using additions and multiplications.
Here are the formal definitions of these models, followed by some examples in Figure 1.1.

Definition 1.1 (Algebraic circuit). An algebraic circuit is a directed acyclic graph (DAG), with the
leaves (nodes without incoming edges) being labelled by variables and field constants, and the gates
(nodes with incoming edges) being labelled by addition (+) and multiplication (×). The unique node
without any outgoing edges is called as the output node of the circuit.

An algebraic circuit computes a polynomial in the natural way. That is, the addition gates compute
the sum1 of the polynomials computed by their children and the multiplication gates multiply the
polynomials computed by their children. The circuit is said to compute the polynomial computed by its
output node.

The size of a circuit is the number of nodes in the graph, and the depth is the length of the longest
path from the output gate to a leaf. ♦

Definition 1.2 (Algebraic formula). An algebraic formula is an algebraic circuit whose underlying
DAG is a tree.

The size of a formula is the total number of leaves in the underlying tree, and the depth is the

1We shall also allow field constants on the incoming edges of addition gates (assumed to be 1 by default), in
which case these gates compute the corresponding linear combination of the input polynomials.

1

length of the longest path from the output gate to a leaf. ♦

The complexity of a certain polynomial f is then defined as the size of the smallest circuit
computing f . Note that the complexity of f as defined above closely resembles the fewest
number of operations required to compute f on any input, just as we wanted.

+

×

×

3

+ +

z

3

1 z −4 z z

(a)

×

+ +

×

7

1

3

z

−2

(b)

+

×

−2

×

+ + + +

x

−12

y

2

x y

ϕ

x y x

−3

y

(c)

+

×

3.5

×

π

×

21

+ + +

x

5
y

−8

1

7

(d)

Figure 1.1: Algebraic Circuits and Formulas

The examples (a) and (c) in Figure 1.1 are formulas, and hence they “do not reuse com-
putation”. That is, each node in these examples has at most one outgoing edge. Therefore
formulas are believed to be a strictly weaker model than circuits: there are polynomials that
are efficiently computable by circuits, but not by formulas. However, proving such a result
remains a major open problem.

1.1 Easy and Hard Polynomials

With a natural measure for the complexity of polynomials at hand, the natural next step is
to establish a good definition for “easy” and “hard” polynomials. For this, we shall turn to
the known literature. The seminal work of Valiant [Val79] is widely regarded as the first step
(although some research on the complexity of algebraic computation already existed [Str69,
Str73, Hya77]) in formalizing the notions of easy and hard polynomials. We will therefore
use the relevant definitions from Valiant’s work, as is commonly done.

For a fair comparison between different polynomials, we express their complexity (size)
as a function of their basic parameters, the number of variables n and the degree d. This
naturally leads us to the notion of polynomial families, which is a fairly intuitive concept. Let
us consider the determinant polynomial, which for an n× n matrix is a polynomial of degree
n on its n2 entries. The determinant polynomial thus has a fixed meaning for every positive
integer n, and combining all the n× n determinants gives us the determinant family, which we
denote by {Detn}.

We can similarly extend almost all of the known polynomials to polynomial families. Most
of the natural questions in algebraic complexity theory focus on polynomial families where
the degree of the nth polynomial is poly(n). A good reason for this is that we want to be

2

able to efficiently evaluate the polynomials on certain inputs, and a super-polynomial degree
might lead to super-polynomially long outputs even on small inputs 2. We are now ready to
define the class of easy polynomial families, which we now call VP (Valiant’s P).

Definition 1.3 (VP: Efficiently computable polynomials). A family of polynomials { fn} of degree
d(n) = poly(n) is said to be in VP if fn can be computed by a circuit of size s(n) = poly(n) for all
large enough n. ♦

This definition of easy polynomials has an important consequence: almost all polynomi-
als are hard to compute. This can be informally argued as follows. An n-variate degree-d
polynomial potentially has about dO(n) monomials when d >= n, which is exponential in
n; whereas an algebraic circuit of size poly(n) only has poly(n) “parameters”. Therefore for
any large enough value of n, the set of all easy polynomials should form a tiny subset of all
polynomials. This intuitive argument can in fact be formalised using a dimension counting ar-
gument, giving us that a “random polynomial” is hard to compute with very high probability.
A natural question is then, do we “know” examples of polynomials that are hard to compute?

Note that a “random polynomial” will most likely have an exponentially long description,
where we basically just list out all its coefficients. This goes against most intuitive definitions
of a “known” polynomial. We should therefore try to find an explicit polynomial that is hard
to compute; but how do we decide if a polynomial is “explicit enough”? Ideally, we would
like to fix a definition that is also in some sense defined using circuits, like VP.

Certainly, a polynomial whose coefficients can be computed efficiently should be “ex-
plicit” under our definition. Fortunately, Valiant [Val79] has already defined a class of effi-
ciently definable polynomials, which we now call VNP (Valiant’s NP). The formal definition is
slightly more involved, and we will defer it to Chapter 2. As we shall see later, the class VNP

can indeed be defined using circuits, and also includes most polynomials we would like to
call explicit, due to the following condition.

Fact 1.4 (Consequence of Valiant’s criterion [Val82] (Informal)). Suppose f (x) is an n-variate
polynomial of degree poly(n) whose coefficients are computable in time poly(n); then f ∈ VNP.

We are now ready to define the first fundamental question in algebraic circuit complexity,
that of finding explicit hard polynomials. In its full generality, this task actually forms a class
of questions based on which algebraic model we work with, and the hardness (or easiness)
parameter that we fix. Such questions are called hardness questions or lower bound questions,
as they require us to prove that the complexity of a polynomial is bounded by some function
from below. Of course, when we work with VP being the class of easy polynomials we get the
following question, analogous to the famous P vs NP question.

Question 1.5 (Circuit lower bounds). Is there a family of explicit, hard polynomials {hn}?
In other words, is VP = VNP?

2See Grochow’s answer on stackexchange.com [Gro13] or Forbes’ thesis [For14] for a more detailed discussion.

3

1.2 Polynomial Identity Testing

A typical lower bound statement looks like “Any circuit computing f requires size > s”. While
this is certainly a statement about f , it is also a statement about the set of all circuits of size
≤ s, in that they cannot compute f . We now introduce another fundamental question about
classes of circuits which, among other things, also has intimate connections to the lower
bound question.

Consider the following algorithmic task about a class of circuits. Given a circuit C of size
≤ s, determine if it computes the zero polynomial: C(a) = 0 for all inputs a. This task is
called polynomial identity testing (PIT) 3. The term “identity testing” is due to the fact that we
are essentially trying to verify whether the circuit is a wiring of some (non-trivial) algebraic
identity like (a + b)(a− b) + b2 − a2, or (x + y)2 − x2 − y2 over characteristic 2.

In our search of explicit, hard low-degree polynomials, the class of n-variate circuits of
size and degree poly(n) automatically becomes interesting. In fact, since we are interested
in syntactic computation, this class is exactly the class VP. So we can just ask if there is a
poly(n)-time PIT-algorithm for n-variate circuits within VP, for every n? However, it also
makes sense to study this question outside the context of VP, which we will state as follows.

Question 1.6 (Polynomial Identity Testing (PIT)). Is there a poly(n, d, s)-time algorithm, which
when given as input any n-variate, degree d, size s circuit C, determines if C ≡ 0?

This question is indeed simpler than Question 1.5, and has a pretty straightforward solu-
tion using randomness, thanks to the following lemma which has been independently proven
multiple times in different guises4.

Lemma 1.7 (Polynomial Identity Lemma [Ore22, DL78, Zip79, Sch80]). Suppose f (x) ∈ F[x] is
an n-variate polynomial of degree d, and let S ⊆ F be a finite set of size strictly larger than d. Then
f (a) 6= 0 for at least a

(
1− d

|S|

)
fraction of a’s from Sn.

Thus, if we take a set S of 1000d distinct points and evaluate the given circuit on a ran-
dom point from Sn, then we will succeed almost every time. A subtle issue here is that the
output of the given circuit could have exponential bit complexity, even with respect to the
bit-complexities of the constants in the circuit5. We shall therefore just assume a computa-
tional model where all operations in the underlying field are unit cost. As a consequence
of Lemma 1.7, the interesting question in the identity-testing-world is to obtain an efficient,
deterministic algorithm (note that both the properties are important).

Question 1.8 (Deterministic PIT). Is there a poly(n, d, s)-time deterministic algorithm, which
when given as input any n-variate, degree d, size s circuit C, determines if C ≡ 0?

3Some texts use other names like: arithmetic circuit identity testing (ACIT), polynomial/circuit zero testing,
but polynomial identity testing (PIT) seems to be the most widely used name.

4See for example [BCPS18] for a detailed survey of such results.
5We can get around this by executing the circuit gate-by-gate modulo a uniformly random prime of poly(s, n, d)

bits. We skip the details, as that discussion is slightly off-topic.

4

1.2.1 Hitting Sets

An interesting characteristic of the above-mentioned randomized algorithm is that it only
needs evaluation-access to the circuit being tested, and in particular does not need to “look
inside” the circuit. As a result, such tests are called blackbox polynomial identity tests (blackbox
PITs) 6. Correspondingly, the tests that depend on the underlying graph of the circuit being
tested, are called whitebox PITs. Therefore, Question 1.8 can be seen as the whitebox PIT
question.

Let us take a closer look at the blackbox variant of Question 1.8: given a low-degree,
efficiently computable polynomial, we evaluate it on some points to find out if it is zero
everywhere. It is easy to show that adaptive querying does not improve the worst case behaviour
of such an algorithm. This means that we could just collect all the potential evaluation points
that our algorithm could ever use, and use the entire set for every input. Such a set is called
a hitting set. Formally, a set of points H is a hitting set for a class of polynomials C, if for
every nonzero f ∈ C we have that f (h) 6= 0 on some point h ∈ H. The blackbox variant of
Question 1.8 then becomes the following question about designing a set of points, which is
much more specific than designing an algorithm.

Question 1.9 (Small hitting sets). Does there exist a set H of poly(n, d, s) points, such that for any
nonzero n-variate, degree d, size s circuit C, there exists a point h ∈ H such that C(h) 6= 0?

Interestingly, the answer to Question 1.9 is ‘Yes’; we already know that such a set of points
exists (details in Chapter 2). However, that does not necessarily mean that we have an efficient
algorithm for blackbox PIT. For that, we have to additionally insist that an algorithm should be
able to generate the set H efficiently. We will call a set explicit if it can be generated efficiently,
as just described.

Question 1.10 (Blackbox PIT: explicit hitting sets). Is there an explicit set H of poly(n, d, s)
points, such that for any nonzero n-variate, degree d, size s circuit C, there is a point h ∈ H such
that C(h) 6= 0?

We shall now spend some more time on the two central questions in algebraic complexity,
Question 1.5 and Question 1.10, before moving on to the contributions of this thesis. In the
next section, we will first see the highlights of research on both these fronts and then briefly
explore some fascinating connections between the two seemingly unrelated questions.

1.3 Background

1.3.1 Determinants and Permanents

We saw that finding whether explicit hard polynomials (Question 1.5) exist is essentially
equivalent to studying the classes VP and VNP. When dealing with complexity classes, it

6We will abbreviate both ‘polynomial identity testing’ and ‘polynomial identity test’ as PIT, whenever the
intended meaning is clear from the context.

5

often helps to have objects that are good representatives for the strengths and limitations
of these classes. For us, these representatives will be what are called complete polynomials.
Intuitively, a complete polynomial could be seen as “the hardest polynomial” in that class. We
will now see two polynomials, one that is complete for VNP and the other which is complete
for VBP, a (possibly smaller) subclass of VP. These will therefore be our representatives for
easy and explicit (and possibly hard) polynomials.

We shall now begin by describing the class VBP, which comes from the model of algebraic
branching programs.

Definition 1.11 (Algebraic Branching Programs (ABPs)). An algebraic branching program is a
layered, directed graph. There are two special vertices, source (labelled s) and sink/target (labelled t),
which are the unique vertices in the first (leftmost) and the last (rightmost) layers, respectively. All the
edges in the graph go from left to right, and are between vertices in two distinct layers. Each edge is
labelled by a linear polynomial in the underlying variables over the underlying field.

Each path from s to t is said to compute the product of the labels on its edges, and the ABP
computes the sum of all the paths from s to t.

Alternatively, an ABP can be seen as a product of several matrices, with each matrix having linear
polynomials as its entries, and the ABP computing the (1, 1)th entry of the matrix product.

The number of layers (or the number of matrices) is called the length of the ABP and the maximum
number of vertices in a single layer (or the larger dimension of the biggest matrix) is called its width.
The size of the ABP is just the total number of vertices (sum of the dimensions of all the matrices). ♦

Definition 1.12 (VBP (Informal)). An n-variate polynomial f is said to be in VBP, if it has an ABP
of size poly(n). ♦

The computational power of ABPs lies between that of formulas and circuits. The fact that
a formula can be efficiently simulated by an ABP is easier to see using the layered graph view,
while the matrix multiplication view almost immediately tells us that circuits can efficiently
simulate ABPs. While it is believed that there are super-polynomial separations between
formulas, ABPs and circuits, none of these separations have been proven yet.

Definition of completeness. We first need to decide what it means for a polynomial f to be
able to express another polynomial g efficiently. We want our definition to yield an efficient
representation for g, whenever we have an efficient representation of f , and ideally this should
be independent of what model we choose for these representations. It therefore makes sense
to use one of the simplest ways of going from one polynomial to the other. The following
definition is a good way of achieving this.

Definition 1.13 (Polynomial projection). A polynomial f (xn) is said to be a projection of the poly-
nomial g(ym), if there exist linear polynomials `1(x), `2(x), . . . , `m(x) such that the following holds.
f (x) = g(`1(x), `2(x), . . . , `m(x)). ♦

Important complete polynomials. While there are complete polynomials known for the
class VP, the class VBP has a well-known polynomial that is complete for it.

6

Theorem 1.14 ([Val79]). Let f (x) be a polynomial that is computable by an ABP of size s. Then there
is an m = poly(s) such that f (x) is a projection of Detm, the m×m symbolic determinant.

Note that Theorem 1.14 only says that the symbolic determinant can efficiently simulate
any ABP. The other part of the completeness result is implied by the following important
result of Mahajan and Vinay [MV97].

Theorem 1.15 ([MV97]). For all large enough n ∈ N, the n × n symbolic determinant Detn is
computable by an ABP of size poly(n). In other words, the family Detn ∈ VBP.

For the class VNP, a close cousin of the determinant polynomial called the permanent
polynomial was shown to be complete by Valiant in his foundational work [Val79]. An easy
way to obtain the nth permanent polynomial Permn is to change all the −1 coefficients in Detn

to +1. We defer the formal definitions of Detn and Permn to Chapter 2.

Theorem 1.16 (Permanent is VNP complete [Val79] (Informal)). Let f (xn) be a polynomial in
VNP. Then there is an m = poly(n) such that f (x) can be written as a projection of Permm.

These completeness results for the determinant and the permanent give us a (weak) refor-
mulation for Question 1.5.

Question 1.17 (Determinant vs Permanent). Does there exist a function m(n) = poly(n) such
that for all large enough n ∈N, we have that Permn is a projection of Detm?

1.3.2 Depth Reduction Results

It is easy to see that to compute a monomial of degree d, a formula of depth O(log d) suffices,
even if we restrict all product gates to have at most 2 inputs. Furthermore, this restriction
on the depth does not impact the size of our formula by much. We shall now see that very
similar statements are true for algebraic formulas and even circuits. Furthermore, unlike
their boolean counterparts, even constant depth algebraic formulas seem to have non-trivial
computational power.

Efficient Depth Reduction

Algebraic formulas. Intuitively, since the graphs corresponding to formulas are just trees,
it is perhaps not too ambitious to expect that we can “balance” the tree so that its depth is
logarithmic in its size. This indeed turns out to be true, formalised by the following result.

Theorem 1.18 (Depth reduction for formulas [Bre74]). Let f (x) be a polynomial that is computable
by a formula Φ of size s. Then, there exists a formula Φ′ of size poly(s) and depth O(log s) which
also computes f (x).

7

Algebraic circuits. While we intuitively expect to reduce the depth of a formula by “balanc-
ing the underlying tree”, it is not at all clear that circuits should also have such a property.
For instance, we do not know if it is possible to reduce boolean circuits to logarithmic depth.
In fact it is believed that boolean circuits of logarithmic depth (NC1) are not as powerful as
polynomial sized boolean circuits (P/ poly). In the algebraic world however, the following
remarkable result of Valiant, Skyum, Berkowitz and Rackoff [VSBR83], and a strengthening
of it due to Allender, Jiao, Mahajan and Vinay [AJMV98], show us that circuits can in fact be
“balanced”.

Theorem 1.19 (Efficient depth reduction [VSBR83, AJMV98]). Suppose f (x) is a polynomial
of degree d that has a circuit of size s. Then f (x) also has a circuit of depth O(log d), with each
multiplication gate having at most 2 children, of size poly(s).

Some useful properties of the proof of the above result from [AJMV98], are worth men-
tioning. Firstly, the proof is constructive, in that it also gives an algorithm to convert a given
algebraic circuit into one with a smaller depth, computing the same polynomial. Secondly,
this algorithmic procedure largely involves “rewiring” the original circuit, which means that
the procedure preserves a wide variety of attributes of the original circuit. In fact, as we
will later see in Chapter 3, one of the results in this thesis crucially depends on the second
property.

Note that both the above results maintain the efficiency of the representation they begin
with and yet allow us to reduce the depth quite significantly. So can we gain a bit more if we
are willing to let the size increase even further, as long as it is less than some trivial bound?

Depth Reduction to Constant Depth

Representing a polynomial as sum of its monomials (f (x) = ∑m fm ·m) trivially gives us an
algebraic circuit/formula for it of depth 2. However, here the size is equal to the number of
monomials that appear in f , which could be as large as dO(n). Thus dO(n) is a trivial upper
bound on the size of any polynomial; and we expect an easy polynomial to have smaller and
smaller circuits/formulas as we allow the depth to grow. An interesting question here is to
know how quickly the size drops as the depth grows.

Once again, algebraic circuits admit depth reduction to a significant extent, as we shall
now see. The following result due to Agrawal and Vinay [AV08], which was later simplified
and strengthened by Koiran [Koi12] and Tavenas [Tav15], tells us that even constant depth
formulas have non-trivial expressive power.

Theorem 1.20 (Depth reduction to depth 4 [AV08, Koi12, Tav15] (Informal)). Suppose f is a
degree d polynomial that is computable by a circuit of size s. Then f can also be computed by a depth
4 formula of size sO(

√
d).

Furthermore, all the multiplication gates in the formula have O(
√

d) children.

Remark. The following more general version of the theorem can also be proven using similar tech-
niques.

8

Suppose f is a degree d polynomial that is computable by a circuit of size s. Then for any constant k,
f can also be computed by a depth 2k circuit of size sO(k√d). ♦

Note that when the degree is O(n) (e.g. Detn, Permn), the above theorem gives us a much
smaller circuit than the trivial circuit of size nO(n).

Now that we know about depth-2 and depth-4 size of a polynomial with a size s circuit,
it would be great to know what happens at depth 3. This question was answered by Gupta,
Kamath, Kayal and Saptharishi [GKKS16] who showed that over fields of characteristic zero
(e.g. rationals, reals), it was possible to further reduce the depth to just 3, while essentially
maintaining the same size bound.

Theorem 1.21 (Depth reduction to depth 3 [GKKS16] (Informal)). Suppose f ∈ R[x] is a degree
d polynomial that is computable by a circuit of size s. Then f can also be computed by a depth 3
formula of size sO(

√
d).

1.3.3 Hardness - Randomness Connections

Observe that the two central questions Question 1.5 and Question 1.10 are quite similar, in
that both the tasks require us to find a “weakness” of the model being studied. Due to
the existence of an efficient randomized algorithm, the task of blackbox PIT for algebraic
models is seen as a derandomisation task, and a hitting set is seen as an object that any small
algebraic circuit “can not distinguish from a random set”. The fact that hard objects are
useful in derandomisation tasks is well known and extensively studied across complexity
theory, and algebraic circuit complexity is no exception, with proven connections going in
either directions.

Hard polynomials from hitting sets. Perhaps the easier direction to verify is the fact that
explicit hitting sets yield (somewhat) explicit hard polynomials.

Theorem 1.22 ([HS80, Agr05] (Informal)). Suppose C is a class of n-variate polynomials of indi-
vidual degree at most d, and let H be a hitting set for C of size � dn. Then there exists an n-variate
polynomial f of individual degree ≤ d, such that f vanishes on all the points inH and therefore f 6∈ C.

It is not hard to see that a polynomial vanishing on a given set of points can be constructed
by solving a system of linear equations, which is essentially the proof of the above theorem.
However, solving such a system need not always yield an explicit polynomial, and pinning
down the exact properties of H that give us a hard polynomial in say, VNP, remains an
interesting open question.

Hitting sets from hard polynomials. The earliest known result in the other direction was
proven by Kabanets and Impagliazzo [KI04], by extending the ideas from a similar work in the
boolean setting [NW94]. The basic intuition was that for a “hard enough” polynomial f , the
evaluations of f should look close to random to any “small” circuit. Of course, formalizing

9

this intuition and getting a handle on the words “hard enough” and “small” requires all the
work and the combinatorial machinery that goes into this proof. For now, we will state an
informal version of a consequence of the original result.

Theorem 1.23 ([KI04] (Informal)). Suppose f (x) is a k-variate polynomial that requires circuits of
size exp(Ω(k)) to compute it. Then for n ≈ exp(k), the class C(n) of n-variate circuits of size and
degree poly(n) has a hitting set of size nO(k).

Note that the above statement is only true for algebraic circuits. This is because its proof
crucially uses the fact that “factors of easy polynomials are easy”, which was known only
for circuits until the recent result of Sinhababu and Thierauf [ST20] who proved it for ABPs.
However, some works have overcome this barrier and have proven similar results for some
specialized settings.

Dvir, Shpilka and Yehudayoff [DSY09] explored the question of closure under taking factors
for bounded depth circuits, and showed that hard-enough polynomials (of low individual de-
gree) for a depth d yield sub-exponential hitting sets for depth (d− 5) circuits. Guo, Kumar,
Saptharishi and Solomon [GKSS19] showed that a constant variate polynomial (over reals
or complexes) that is almost optimally hard would lead to efficient hitting sets for algebraic
circuits. Thus, their result shows that a constant variate polynomial that is optimally hard
completely resolves Question 1.10. Another recent work of Andrews [And20] shows a similar
result for fields of small characteristic, by building on the works on the technique of bootstrap-
ping hitting sets [AGS19, KST19]. This phenomenon of bootstrapping is explored by one the
works in this thesis, the details of which can be found in Chapter 5.

For a comprehensive and insightful discussion about hardness-randomness connections
in algebraic complexity, refer to the recent survey by Kumar and Saptharishi [KS19].

1.4 Current Status

1.4.1 Lower Bounds

Since proving lower bounds for general circuits and formulas has proven to be hard, most of
the research in algebraic circuit complexity has focused on more structured variants of these
models. We shall now briefly survey some of those results that are relevant to rest of the
thesis.

Constant Depth Models

Constant depth models are an interesting object of study mainly because of their simplicity.
Further, the depth reduction results (see Section 1.3.2) only add to their importance. Nisan
and Wigderson [NW97] proved an exponential lower bound on homogeneous depth-3 circuits
for the elementary symmetric polynomial, which is known to have small circuits. Later, Shpilka
and Wigderson [SW01] extended their techniques and showed a lower bound of Ω(n2) on

10

non-homogeneous depth-3 circuits for the same polynomial, which happens to be tight due to
a construction that is attributed to Ben-Or. A further enhancement of the same technique
was then used by Kayal, Saha, Tavenas [KST16] to give an almost cubic lower bound against
depth-3 circuits for a polynomial in VNP. Later Balaji, Limaye and Srinivasan [BLS16] showed
that same techniques could achieve essentially the same bound for a polynomial family in VP.

Note that the depth reduction results to depth-4 circuits yield homogeneous circuits; this
saw a flurry of activity in homogeneous depth-4 circuit lower bounds. Using suitable vari-
ants of the measure of shifted partial derivatives introduced by Kayal [Kay12], a sequence of
results showed exponential lower bounds against homogeneous depth-4 circuits. A lower
bound of exp

(
Ω(
√

n)
)

for Detn and Permn was shown by Gupta, Kamath, Kayal and Sapthar-
ishi [GKKS14], which was improved to a exp

(
Ω(
√

n log n)
)

lower bound for a polynomial in
VNP by Kayal, Saha and Saptharishi [KSS14]. The same lower bound was later achieved for
a polynomial in VP by Fournier, Limaye, Malod and Srinivasan [FLMS15]. All these results
assumed an upper bound on the fan-in of the product gates in the bottom layer, which was
the same as that in Theorem 1.20. For the setting of unrestricted bottom fan-in, Kayal, Limaye,
Saha and Srinivasan [KLSS17] obtained an nΩ(

√
n) lower bound against homogeneous depth-4

circuits for a polynomial in VNP; this was also shown to be true for a polynomial in VP by
Kumar and Saraf [KS14]. Note that among other things, this long line of work implies that
the parameters in Theorem 1.20 are asymptotically tight. Recently, the work of Gupta, Saha
and Thankey [GST20] gave a slightly super-quadratic lower bound against non-homogeneous
depth-4 circuits, which is the best known lower bound in this setting.

Constant depth powering models. Replacing one or more product-layers in constant depth
models with powering gates gives some interesting models; we will now see some results about
them. The measure of shifted partial derivatives referred to in the above mentioned works was
in fact developed by Kayal [Kay12] to study a fairly restricted variant of depth-4 circuits,
that of sums of powers of bounded-degree polynomials, against which he showed an exponential
lower bound for the monomial. A powering model that is almost fully understood in the
context of lower bounds, is the depth-3-powering model which was first studied as a circuit
model by [Sax08]. This model computes polynomials as sums of powers of linear forms. We now
know tight exponential lower bounds on the size of a depth-3-powering circuit that computes
a monomial [FS13, RS11]. This model is studied by one of the works in this thesis, which has
been described in Chapter 4.

Multilinear Models

Since we are interested in the complexity of Detn and Permn — which are both multilinear
— multilinear models are also well studied. These models compute multilinear polynomials
even in their intermediate computation, and thereby always output a multilinear polynomial.
More formally, a circuit/formula is said to be a syntactically multilinear circuit/formula if for
every product gate v in it, we have that the sets of variables, appearing in the left and the

11

right subtrees of the tree rooted at v, are disjoint. Similarly, an ABP is said to be a syntactically
multilinear ABP, if every s to t path in it computes a multilinear polynomial. We shall now
see some of the results about multilinear models. We drop the word “syntactically” for this
discussion for brevity.

The first lower bound of this kind came from a work of Raz [Raz06], where he showed a
quasipolynomial (nΩ(log n)) lower bound on the size of the syntactically multilinear formula
computing a polynomial that has a poly(n) sized multilinear circuit. Note that this gives
a tight separation between multilinear formulas and circuits due to the efficient depth re-
duction results (see Theorem 1.19). More results used variants of the techniques introduced
by Raz [Raz06]. Exponential lower bounds were shown against constant depth multilin-
ear circuits by Raz and Yehudayoff [RY09], Raz [Raz09] showed a quasipolynomial lower
bound on the multilinear formulas computing Detn and Permn, and Hrubeš and Yehuday-
off [HY11b] gave a super-polynomial lower bound against homogeneous multilinear formu-
las for a polynomial that has O(n2) size depth-3 non-homogeneous formulas. We also know
of super-polynomial separations between multilinear formulas and ABPs, from the work of
Dvir, Malod, Perifel and Yehudayoff [DMPY12] who proved a nΩ(log n) separation, which is
also known to be tight.

Non-commutative Models

A slightly different class of models that is well studied, is that of non-commutative algebraic
models. In a non-commutative model, we forgo the assumption that the underlying variables
commute under multiplication. In other words, we treat xy and yx as distinct monomials
for all pairs of distinct variables x, y. A good use case for these models is polynomials over
matrices. Non-commutativity makes it harder to compute a certain monomial in different
ways, and therefore it is slightly easier to prove lower bounds against these models.

Nisan initiated the study of non-commutative models through his landmark work [Nis91],
which proves exponential lower bounds against non-commutative ABPs computing the de-
terminant and the permanent polynomials. He showed these results by providing an exact
characterization for the non-commutative ABP complexity of a polynomial. This characteriza-
tion has also led to some results on PIT and reconstruction of non-commutative ABPs. Lagarde,
Malod and Perifel [LMP19] extended Nisan’s characterization and showed finer separations
between non-commutative ABPs and circuits; they introduced a new model called Unique
Parse Tree (UPT) circuits and showed that ABPs, UPT circuits and circuits, were exponentially
separated, in that very order. An intriguing result about non-commutative models due to
Arvind and Srinivasan [AS18] is worth mentioning: they show that (the non-commutative
version of) Detn is as hard as (the non-commutative version of) Permn for non-commutative
circuits, which in particular means that we expect a super-polynomial lower bound on the
non-commutative circuit size of Detn, a stark contrast from the commutative world.

12

1.4.2 Hitting Sets

Explicit hitting set constructions have always been preceded by strong explicit lower bounds
against the same models. Thus, PIT is seen as a harder task than lower bounds, and very few
strong lower bounds that we just saw have resulted in constructions of non-trivial hitting sets.

Unlike in the case of lower bounds, designing hitting sets even for depth-2 circuits (also
called sparse polynomials) becomes a non-trivial question. Efficient hitting sets for the class
of all sparse polynomials are known due to Klivans and Spielman [KS01], and Agrawal and
Biswas [AB03]. This result can be seen as a building block for most non-trivial hitting set
constructions that we know of today.

A slightly more powerful (yet simple) constant depth model is that of depth-3-powering
circuits, for which we know of quasipolynomial (sO(log s)) sized hitting sets due to Forbes
and Shpilka [FS12], and Agrawal, Saha and Saxena [ASS13]. Later, Forbes, Saptharishi and
Shpilka [FSS14] improved this to a hitting set of size sO(log log s). Forbes, Ghosh and Sax-
ena [FGS18] give an efficient hitting set for this model, when the number of variables de-
pends logarithmically on the size (n = O(log s)). Obtaining efficient hitting sets for depth-3-
powering circuits in the general setting remains an interesting open question.

The commutative analogues of non-commutative ABPs, called Read-once Oblivious ABPs
(ROABPs) have been extensively studied in the context of hitting sets, perhaps due to Nisan’s
characterization [Nis91] which extends to ROABPs. The first explicit construction of hitting
sets for ROABPs came from the work of Forbes and Shpilka [FS13], who gave an explicit
hitting set of size sO(log n) in what is called a known variable order setting7. Agrawal, Gurjar,
Korwar and Saxena [AGKS15] later achieved the same parameters in the unknown variable
order setting. Gurjar, Korwar, Saxena and Theirauf [GKST17] constructed hitting sets of size
(nds)O(log n) for sums of constantly many ROABPs, and Gurjar, Korwar and Saxena [GKS17]
gave efficient hitting sets for ROABPs of constant width in the known variable order setting.
Recently, Guo and Gurjar [GG20] gave a construction that matches most of the currently
known hitting sets for ROABPs and improves on some parameters in some restricted settings.

Apart from ROABPs and depth-3-powering circuits, non-trivial hitting sets are known
for restricted subclasses of other well-studied models, like constant depth multilinear circuits
with bounded top fan-in (cf. [SS10, AvMV15, ASSS16]), constant depth multilinear circuits
(cf. [OSV16]), and read-once formulas (cf. [MV17]).

1.4.3 Analysing Lower Bound Techniques

As we saw, there has been significant progress on lower bounds against several structured al-
gebraic models. However, this has not quite translated into any strong lower bounds against
the general models like circuits or formulas. This disparity has recently attracted some atten-
tion from the community, and some notable results that comment on the efficacy of current
lower bound techniques have been presented. The key observation in most of these results

7This setting is technically not “fully blackbox”, but it still subsumes the hitting set question for non-
commutative ABPs.

13

is that several lower bound techniques that have been successful against structured models
have a particular structure. For instance, the techniques used in almost all the lower bounds
against constant depth models can be seen as variants of the method of partial derivatives, which
was first introduced by Nisan and Wigderson [NW97].

A significant result analysing the efficacy of lower bound techniques that followed a “com-
mon template” was that of Razborov and Rudich [RR97], in the world of boolean circuits. They
observed that almost all the known lower bounds against boolean circuit models had been
proved (or could be reproved) using a common template, which they called a natural proof
strategy. They then showed that under a widely believed cryptographic assumption, no nat-
ural proof strategy would be able to show a super-polynomial lower bound against boolean
circuits. Thus, they showed the existence of a natural proofs barrier towards proving boolean
circuit lower bounds.

Considering that algebraic circuits seem like a fairly general and powerful model of com-
putation, it is tempting to think that the natural proofs barrier of Razborov and Rudich [RR97]
also extends to this setting. This problem turns out to be a non-trivial one, and indeed it
is not known whether their results extend to algebraic circuits. This question is closely re-
lated to the question of whether cryptographically secure algebraic pseudorandom functions
can be computed by small and low degree algebraic circuits and there does not seem to be
substantial evidence one way or the other on this 8.

It was observed by various authors ([AD08, Gro15, FSV18, GKSS17]) that most of the cur-
rently known proofs of algebraic circuit lower bounds fit into a common unifying framework,
not unlike that for boolean circuits ([RR97]), although of a more algebraic nature. These proofs
implicitly go via defining a property for the set of all polynomials and using this property
to separate the hard polynomial from the easy ones. Informally, any algebraic circuit lower
bound which goes via defining a property that can be efficiently simulated by a polynomial,
is an algebraically natural proof of a lower bound.

Analogous to the abstraction of natural proofs for Boolean circuit lower bounds, this frame-
work of algebraically natural proofs turns out to be rich and general enough that almost all
of our current proofs of algebraic circuit lower bounds are in fact algebraically natural, or
can be viewed in this framework with a little work [Gro15]. Thus, this definition seems like
an important first step towards understanding the strengths and limitations of many of our
current lower bound techniques in algebraic complexity.

The recent works of Forbes, Shpilka and Volk [FSV18], and Grochow, Kumar, Saks and
Saraf [GKSS17] argue that under an appropriate (but non-standard) pseudorandomness as-
sumption of the existence of succinct hitting sets, the answer to the question above is negative.
That is, algebraically natural proof techniques cannot be used to show strong lower bounds
for algebraic circuits. Using this observation, [FSV18] showed that for various restricted circuit
classes C and D, lower bounds for C cannot be proved via properties that can be simulated
by polynomials in D. However, this question has remained unanswered for more general

8Refer to [AD08] and [FSV18] for a more detailed discussion on this issue.

14

circuit classes C and D. In particular, we do not have any strong evidence for or against the
existence of efficient equations for VP. We expand on this discussion in Chapter 6, where we
also present some evidence in favour of the natural lower bound techniques.

1.5 Contributions of the thesis

This thesis studies hitting sets for algebraic circuits and other restricted models. In particular,
the thesis provides two hitting set constructions for restricted models, and two interesting
consequences of explicit hitting sets for algebraic models. We now briefly state these results
before discussing them in more detail in the subsequent sections.

1.5.1 Hitting Sets for UPT circuits

The first result is a hitting set construction for the non-commutative model of UPT circuits,
which was introduced by Lagarde, Malod and Perifel [LMP19]. In their work and a follow-up
work by Lagarde, Limaye and Srinivasan [LLS19], several whitebox PITs which were known
for non-commutative ABPs were lifted to UPT circuits. Thus an interesting open question
was whether the hitting set constructions for non-commutative ABPs (and ROABPs) could
be extended to UPT circuits. We answer this question in the affirmative and extend the
known results for ROABPs [AGKS15, GKST17, GKS17] to the corresponding analogues of
UPT circuits. Here are two of our main results about explicit hitting sets. We expand on our
results on UPT circuits in Chapter 3.

Theorem 1.24 (Hitting sets for UPT circuits [ST18]). For n, d, s ∈ N, let U (n, d, s) ⊂ F 〈x〉 be
the class of all n-variate, degree d polynomials computed by UPT circuits of size at most s. Then there
is a set of matrices H(n, d, s) ⊂ F(d+1)×(d+1) of size (nds)O(log d) that is a hitting set for U (n, d, s).
Further, H(n, d, s) can be constructed in time (nds)O(log d).

Theorem 1.25 (Hitting sets for sums of UPT circuits [ST18]). For n, d, s, c ∈N, let U (n, d, s, c) ⊂
F 〈x〉 be the class of all n-variate, degree d polynomials computed by sums of at most c UPT cir-
cuits, each of size at most s. Then there is a set of matrices H(n, d, s, c) ⊂ F(d+1)×(d+1) of size
(nds)(2O(c) log d) that is a hitting set for U (n, d, s, c). The set H(n, d, s, c) is constructible in time
(nds)O(log d).

Key Ideas

Our hitting set construction in Theorem 1.24 extends the ideas in the work of Agrawal, Gurjar,
Korwar and Saxena [AGKS15], who use a divide-and-conquer approach to construct a basis
isolating weight assignment (BIWA) for ROABPs. With some effort, one can see that essentially
the same divide-and-conquer method when applied to UPT circuits, yields hitting sets of size
sO(r) for UPT circuits of size s and depth r. At this point, if one shows that any UPT circuit
for a degree d polynomial can be simulated by a UPT circuit of depth of O(log d) (similar to

15

Theorem 1.19), then we would get hitting sets of size nO(log n) for UPT circuits of size poly(n),
thus proving Theorem 1.24.

However, such a depth-reduction result is known to be false. Using the techniques in
[LMP19] (or even [Nis91]), we can show that the palindrome polynomial Pald requires UPT
circuits of depth ω(d/ log d), even though it can be computed by a poly(d) sized UPT circuit.
However, even though Pald cannot be computed by small depth non-commutative circuits,
we observe that a shuffling of the palindrome does indeed have circuits of small depth. For
a permutation σ, we define the σ-shuffling of a degree d non-commutative homogeneous
polynomial f , to be the polynomial that is obtained by permuting each monomial of f using
σ. We prove our depth reduction result (Theorem 3.4) under a suitable shuffling, essentially
by following the strategy of [VSBR83] and [AJMV98], while using the UPT structure based on
the underlying shape of the parse trees. Intuitively, one can say that the argument is basically
about “balancing” the underlying shape of all the parse trees of the given UPT circuit.

As mentioned earlier, with the depth-reduction statement at our disposal, we obtain
hitting sets for UPT circuits by lifting the technique of basis isolating weight assignments of
Agrawal, Gurjar, Korwar and Saxena [AGKS15] to this more general setting to obtain Theo-
rem 1.24. In fact, once we prove the depth-reduction theorem, all our results about hitting
sets UPT circuits and their variants follow from a careful translation of the existing works
ROABPs [AGKS15, GKST17, GKS17] to the setting of UPT (or FewPT) circuits. Consequently,
this also generalizes the respective hitting sets from ROABPs to UPT (or FewPT) set-multilinear
circuits.

1.5.2 Isolating Log-variate Depth-3-Powering Circuits

Our other hitting set construction is for a special case of depth-3-powering circuits or sums
of powers of linear forms (denoted by Σ

∧
Σ). The best known hitting sets for n-variate, de-

gree d, size s depth-3-powering circuits (Σs ∧d Σn) have size (nds)O(log log n) [FSS14]. Forbes,
Ghosh and Saxena [FGS18] considered a low-variate version of this model, where they re-
stricted the number of variables to be O(log(sd)). They provided a blackbox PIT for this
low-variate variant that ran in time poly(2n, s, d) which is efficient in the size of the circuit
when n = O(log(sd)). We construct an explicit isolating weight assignment for low-variate
depth-3-powering circuits using Newton polytopes. A consequence of the weight assignment
construction is a hitting set of size poly(s, d) for log-variate depth-3-powering circuits. We
now state our result and briefly discuss the main proof ideas. Rest of the details of this result
are discussed in Chapter 4.

Theorem 1.26 (Isolating weight assignment for log-variate Σ
∧

Σ). Let F be a field of character-
istic zero, and for s, d ∈ N, let r, m = poly(s, d) be large enough. There exist weight assignments
w1, w2, . . . , wr with wi : [n] → [m] for all i ∈ [r], such that for any polynomial f (x) ∈ Σ[s] ∧[d] Σ
depending on ` = O(log(sd)) variables, there exists an i ∈ [r] such that f has a unique minimum
weight monomial according to wi.

16

Key Ideas

Our main task is to construct an explicit weight assignment that isolates (see Definition 2.16)
polynomials computed by a Σ

∧
Σ circuit. It is easy to see that it is impossible to come up

with a single explicit assignment that isolates all such polynomials, so the goal is then to
come up with a small set of assignments, such that for any fixed polynomial at least one of
the assignments in the set works (see Definition 2.17).

We observe that for any polynomial f , a weight assignment wt is a linear function on the
exponent vectors of the monomials in f , and hence it can be seen as a linear function on the
Newton polytope of f (see definition Definition 4.5). Thus, if we can design a linear function
`(e) that is uniquely minimized at a vertex a of the Newton polytope of f , then we will be
done.

One way to achieve this is to design a weight assignment that gives distinct weights to all
the vertices of the polytope. Therefore, if we bound the number of vertices of the Newton
polytope for any polynomial computable by a Σ

∧
Σ circuit, by say r, then we can come up

with a set of poly(r) assignments using known techniques [KS01, AB03]. In order to prove
such a bound, we then observe that for any polynomial f and any vertex a of the Newton
polytope of f , the dimension of partial derivatives of f is lower bounded by the cone-size of a,
which extends an observation of Forbes [For14, Corollary 8.4.13]. We then apply previously
known bounds on the dimension of partial derivatives for Σ

∧
Σ [For14, Lemma 8.4.8] and

the number of monomials of low-cone size [FGS18] to derive Theorem 4.2.

1.5.3 Bootstrapping Hitting Sets

Our next result is about an interesting consequence of obtaining mildly non-trivial hitting
sets for constant-variate models. In a key step towards understanding hitting sets, Agrawal,
Ghosh and Saxena [AGS19] showed a surprising relation between constant-variate hitting
sets and the central hitting set question Question 1.10. They showed that for all large enough
constants k, even a marginal improvement in the trivial exponential hitting sets, like dk0.49

(instead of dk), will imply an almost-polynomial sized (stiny(s))9 hitting sets for general size s,
degree s circuits. Some questions that arise out of the statement above are: (a) what about
smaller constants k? (b) does a similar conclusion follow from an even milder improvement
like sk0.99

? (c) does a similar statement hold for formulas/ABPs? Building on the techniques
in [AGS19], we answer all these questions in the affirmative, and prove the following result.
More details are discussed in Chapter 5.

Theorem 1.27 (Near-optimal bootstrapping of hitting sets [KST19]). Let k ≥ 2 and ε > 0 be
any constants, and suppose for all large s there are explicit hitting sets of size sk−ε for the class of all
k-variate, degree s polynomials that have circuits of size s.

Then for all large s, the class of all s-variate, degree s polynomials that have circuits of size s has
explicit hitting sets of size stiny(s).

9For tiny(s) = exp(exp(O(log∗ s))).

17

Furthermore, the above statement continues to be true when circuits are replaced by ABPs or
formulas in both the hypothesis and the conclusion.

Key Ideas

Both the above bootstrapping theorems exploit the hardness-randomness connections due
to Kabanets and Impagliazzo [KI04], Heintz and Schnorr [HS80] and Agrawal [Agr05] (see
Theorem 1.22 and Theorem 1.23).

The core idea of bootstrapping in [AGS19] was to observe that for a careful setting of
parameters, one could start with a marginally non-trivial low-variate hitting set, obtain a hard
polynomial using Theorem 1.22 ([HS80, Agr05]), and use that hard polynomial to construct
much better hitting sets for polynomials of a much larger arity using Theorem 1.23 ([KI04]).
The above mentioned result in [AGS19] can then be proven by starting with constant variate
hitting sets and repeating the above process several times till the arity saturates to s.

In order to obtain the stronger statement of Theorem 1.27, we instantiate the proof of
Theorem 1.23 specifically for hard polynomials obtained via hitting sets using Theorem 1.22.
This small but crucial change lets us handle seemingly weaker models of formulas and ABPs,
and additionally allow for a wider range of parameters in the bootstrapping process. Thus,
we can do a finer analysis of the core bootstrapping procedure to obtain Theorem 1.27, which
turns out to be a significant strengthening of results in [AGS19].

1.5.4 Algebraically Natural Proofs

The final result in this thesis investigates the notion of algebraically natural proofs proposed by
Forbes, Shpilka and Volk [FSV18] and Grochow, Kumar, Saks and Saraf [GKSS17] in order
to assess the efficacy of lower bound techniques. They essentially showed that if the class
VP had succinct hitting sets then there were no “natural lower bound techniques” that were
useful against VP. No such hitting sets are known to (provably) exist for VP, but note that
the hypothesis depends only on their existence, and not a proof of correctness.

However, due to the existence of strong positive connections between hitting sets and lower
bounds (see Section 1.3.3), this statement seems a bit counter-intuitive. A natural question
therefore is what sort of lower bound proofs can be obtained from hitting sets. We investi-
gate this and essentially algebraize the proofs in these connections [HS80, Agr05] to prove the
following result about equations for VP: an object closely connected with proofs for circuit
lower bounds against VP. Since our theorem covers almost all well-studied polynomials, it
provides some evidence against a barrier towards proving lower bounds using natural tech-
niques. More details on the result are discussed in Chapter 6.

Theorem 1.28 (Defining equations for VP with small coefficients [CKR+20]). Let VP′ be the
class of all polynomial families in VP that involve polynomials with small coefficients. Then for all
large n, d ∈N and N = (n+d

n), there exists an N-variate polynomial P(Z) ∈ VPN
10 such that:

10That is, size(PN), deg(PN) = poly(N).

18

• For all f ∈ VP′, P(coeff(f)) = 0.

• There exists an n-variate, degree d polynomial h(x) for which P(coeff(h)) 6= 0.

Key Ideas.

At a high level, the idea behind our results is to try and come up with a non-trivial property
of polynomials which every polynomial with a small circuit satisfies. The hope is that once
we have such a property (which is nice enough), one can try to transform this into a defining
equation via an appropriate algebraization. The property that we end up using is the existence
of (non-explicit) hitting sets for polynomials with small circuits.

Let us consider the map ΦH, defined by the hitting setH of C on the set of all polynomials,
that maps any given polynomial f to its evaluations over the points in H. It is clear from
the above observation that any nonzero polynomial in the kernel of ΦH is guaranteed to
be outside C. Thus, if there were a nonzero polynomial that vanishes on all polynomials
f /∈ ker(ΦH), we would have a defining equation for C. Moreover, if such a polynomial
happened to have its degree and circuit complexity polynomially bounded in its number of
variables, we would be able to prove a statement like Theorem 1.28. However, note that not
being in the kernel of a linear map seems to be a tricky condition to check via a polynomial (as
opposed to the complementary property of being in the kernel, which can be easily checked
via a polynomial). To prove our theorems, we get past this issue in the setting of small finite
fields, and for polynomials over C with bounded integer coefficients.

Over a finite field F, a univariate polynomial that maps every nonzero x ∈ F to zero and
vice versa, already exists in q(x) = 1− x|F|−1. Therefore, for a given polynomial f , the defin-
ing equation essentially outputs ∏h∈H q(f (h)). Clearly, for a polynomial f , ∏h∈H q(f (h)) is
zero if and only if f evaluates to a nonzero value on at least one point in H.

To generalize this to other fields, we wish to find a “low-degree” univariate q(x) that maps
nonzero values to 0, and zero to a nonzero value. We observe that when the polynomials in
C have integer coefficients of bounded magnitude , we can still obtain such a univariate
polynomial, and in turn a non-trivial defining equation. Indeed, if q were such a univariate,
we essentially output ∏h∈H q(f (h)), for a given polynomial f . This step relies on a simple
application of the Chinese Remainder Theorem. In order to show that the equations are non-
trivial, we need to show that there are nonzero polynomials with bounded integer coefficients
which vanish everywhere on the hitting set H. We show this via a lemma of Siegel11.

As it turns out, our proofs do not use much about the class VP except for the existence of
small (non-explicit) hitting sets for the class. Since this property also holds for the seemingly
larger class VNP, our results here also extend to VNP.

Recent update. Soon after the compilation of this thesis, in a joint work with Kumar, Ramya
and Saptharishi [KRST20], we showed the following. Assuming that {Permn} requires circuits

11A statement of the lemma can be found here. Refer to [Sie14] for details.

19

https://en.wikipedia.org/wiki/Siegel%27s_lemma

of size 2nε
for some constant ε, the class VNP does not have efficiently computable equations.

In the context of the results in Chapter 6, it might appear that these works contradict each
other. It will be easier to address this issue after understanding the results in Chapter 6 in
more detail, and hence we defer this discussion towards the end of that chapter.

1.6 Organization of the Thesis

In Chapter 2, we shall fix some notation for the rest of the thesis and provide some necessary
technical background for the results mentioned above. The work on constructing hitting sets
for UPT circuits and their variants is discussed in Chapter 3, and the result about hitting sets
for log-variate depth-3-powering circuits is discussed in Chapter 4. The next two chapters dis-
cuss our works on the consequences of non-trivial hitting sets. The results on bootstrapping
of hitting sets are discussed in Chapter 5, and Chapter 6 deals with our results surrounding
the notion of algebraically natural proofs. Finally, we provide some concluding remarks and
some directions for future work in Chapter 7.

20

2 | Preliminaries

In this chapter we will formally define and state some concepts and results that were alluded
to in the previous chapter and those which will be useful for the rest of the thesis. We will
also fix some notation that we use throughout the thesis.

2.1 Basic Notation

• We use lower-case boldface characters like x, y, a, . . . to denote vectors (ordered sets)
of variables and constants, and use indexed lower-case letters to refer to individual
elements, e.g. x = {x1, x2, . . . , xn}.

• For a positive integer k, we denote the set {1, 2, . . . , k} by [k]. We also use boldface letters
with subscripts to denote the number of variables or constant in a vector, for instance
x[4] will mean {x1, x2, x3, x4}; we will drop the subscript whenever the size is irrelevant
or clear from the context.

• For an arbitrary vector a[n] and some e ∈ Nn, we use the shorthand ae for the “mono-
mial” ae1

1 ae2
2 · · · a

en
n .

• For a polynomial f , we denote by supp(f) the set of all monomials that appear in f
with a nonzero coefficient (called the support of f), and we use the notation coeff f (m)

for the coefficient of m in f .

• We use deg(f) to denote the (total) degree of f . For a specific variable t, we sometimes
use degt(f) to denote the degree of f in t, which is the maximum exponent that t
appears with in any monomial in f .

We naturally extend this notation to sets of variables, that is for f (x, y) we use degx(f)
to denote the degree of f in terms of the x variables.

• For a polynomial f (x[n]), when we say that the individual degree of f is at most k, we
mean that for all i ∈ [n], degxi

(f) ≤ k.

• We use F[x]≤d to denote polynomials over the field F in variables x of degree at most d,
and use x≤d to denote the set of all monomials in variables x of degree at most d.

21

• For a polynomial f (x), we will write f = 0 to denote that f is the zero polynomial, or
f (x) ≡ 0 ∈ F[x]. On the other hand, for f being zero at a specific point, say a ∈ Fn, we
write f (a) = 0.

• For a substitution map Φ : x → F[t] and a polynomial f (x) we use Φ(f) to refer to the
polynomial f (Φ(x)) ∈ F[t].

2.2 Computing Polynomials

• For a certain polynomial f (x), we will use size(f) to refer to the size of the smallest
algebraic circuit (see Definition 1.1) that computes f .

• For an algebraic model A, we sometimes use the phrase “A-complexity of f ” to talk
about the size of the smallest A ∈ A that computes f (see also Remark 2.2).

• We study the circuit complexity of certain polynomial families; a polynomial family
should be seen as a collection of polynomials of growing arity (number of variables)
that are somehow interrelated.
We use { fn}n∈N to denote families of polynomials. We drop the index set whenever it
is clear from context.

Definition 2.1 (Family of low-degree polynomials). A sequence of polynomials { fn} given by
{ f1, f2, . . . , fn, . . .} is called a family of low-degree polynomials if there exist constants c1, c2 such that
for all large enough n ∈ N the nth polynomial fn depends on m(n) ≤ nc1 variables and has degree
d(n) ≤ nc2 . ♦

Remark 2.2. While talking about the computability of a polynomial fn ∈ F[x], the underlying model
is allowed to use constants from some extension field K ⊃ F. ♦

Definition 2.3 (VP: Efficiently computable families). A family of low-degree polynomials { fn}
over a field F is said to be in VPF (or just VP when the field is clear from context) if there exists a
constant c such that for all large enough n, the polynomial fn is computable by a circuit of size at most
nc. ♦

Definition 2.4 (VNP: Efficiently definable families). A low-degree family of polynomials { fn} over
a field F is said to be in VNPF (or just VNP when the field is clear from context) if there exists a
constant c such that for all large n there is an m ≤ nc and an (n + m)-variate polynomial gn+m(x, y)
of degree at most nc which has an algebraic circuit of size at most nc that satisfies

fn(x) = ∑
a∈{0,1}m

gn+m(x, a).

♦

22

2.2.1 Some Important Polynomial Families

We now formally define some of the important polynomial families that are studied exten-
sively in algebraic complexity theory.

Definition 2.5 (Elementary symmetric polynomial). For all n, d ∈ N with d ≤ n, the n-variate
symmetric polynomial of degree d is defined as follows.

ESymn,d = ∑
S⊆[n]
|S|=d

∏
i∈S

xi

♦

Definition 2.6 (Determinant). For all n ∈ N, the nth (symbolic) determinant is the following n2-
variate polynomial of degree n.

Detn = ∑
σ∈sn

sign(σ) ∏
i∈[n]

xi,σ(i)

♦

Definition 2.7 (Permanent). For all n ∈N, the nth (symbolic) permanent is the following n2-variate
polynomial of degree n.

Permn = ∑
σ∈sn

∏
i∈[n]

xi,σ(i)

♦

Note that each of the above defined polynomials naturally define the corresponding poly-
nomial families of the appropriate degree.

2.3 Hitting Set Basics

In this section we will go over some of the concepts that are frequently used while working
with hitting sets for classes of polynomials. We start by stating the lemma of Heintz and
Schnorr [HS80] showing that a random set of points is a hitting set.

Lemma 2.8 ([HS80] (Informal)). For n, d, s ∈ N large enough, let C(n, d, s) be the class of all n-
variate polynomials of total degree at most d that are computable by circuits of size at most s. Then for
w = (ds)2 and r = (ns)3, a sequence of points a1, a2, . . . , ar sampled uniformly from the grid [w]n

forms a hitting set for C(n, d, s) with probability at least 0.99.

A note on explicitness. We will be using the notion of “explicitness” of certain objects, es-
pecially hitting sets and functions between positive integers. Throughout this chapter, unless
stated otherwise, we will use the following definition of explicitness.

23

Definition 2.9 (Explicit sets and functions). A set of points H ∈ Fn is said to be explicit, if there is
an algorithm AH which when given n as an input, outputs H in time poly(|H| , n).

A function w : N→N is said to be explicit, if there is an algorithm Aw, which for every k outputs
w(k) in time poly(k). ♦

2.3.1 Hitting Sets and Hitting Set Generators

Since the trivial hitting set for n-variate, degree d polynomials is of size dO(n), a very good
way to get a smaller hitting set for a specific class C of circuits is to reduce the number of
variables, while preserving the nonzeroness, for any circuit C ∈ C. The obvious choice for
such an operation, is a polynomial map that maps k-tuples in the underlying field F to n-
tuples, for some k � n. A polynomial map that “preserves the nonzeroness” for any circuit
in C is called a variable reduction map for C.

Definition 2.10 (Variable reduction map). Let C ⊆ F[x] be a class of n-variate, degree-d poly-
nomials, and let g(t[k]) ∈ F[t[k]]n be a k-variate polynomial map given by a tuple of n polynomials
(g1(t), . . . , gn(t)) for some k < n. We call g(t) a variable reduction map for C, if for every nonzero
C ∈ C we have that C(g(t)) remains a nonzero polynomial in F[t].

We will say that a variable reduction map has degree at most r, if deg(gi) ≤ r for all i ∈ [n]. ♦

One can then obtain a hitting set from a variable reduction map, which is stated in the
following easy lemma. Hence we will now refer to variable reduction maps as hitting set
generators (HSGs), which is the more commonly used name.

Lemma 2.11. Let C(n, d) be a class of n-variate, degree d polynomials, and suppose g(t) is a k-variate,
degree r hitting set generator for C(n, d). Then C(n, d) has a hitting set of size at most (dr)O(k).

Proof. We know that for any nonzero C ∈ C(n, d), C(g(t)) is also nonzero; which happens to
be a k-variate polynomial of degree at most dr. Therefore C(g(ᾱ)) 6= 0 for some ᾱ ∈ (dr + 1)k,
and thus the set H = {g(ᾱ) : ᾱ ∈ (dr + 1)k} is a hitting set for C.

Just as we can obtain hitting sets from HSGs, we can also obtain HSGs from hitting sets
using elementary polynomial interpolation.

Lemma 2.12. Suppose H ⊆ Fn is a hitting set for some class C of n-variate polynomials, with
|H| = r. Then there is a (univariate) hitting set generator g(t) ∈ F[t]n for C of degree at most r.

More generally, for any k, there is a k-variate hitting set generator g(t[k]) ∈ F[t[k]]n for C of
individual degree at most

⌈
r1/k⌉.

In both the cases, the corresponding hitting set generator g can be found in time poly(r).

Proof. Let the hitting set be {h1, . . . , hr}. We will assume that the field has size at least r1.
For the univariate HSG, we construct polynomials g1(t), . . . , gn(t), each of degree at most

(r− 1), such that for each j ∈ [n], gj(i) = hi(j). The vector of polynomials g(t) therefore reads
out H on inputs 1, 2, . . . , r. Now for each j, let cj ∈ Fr be the (purported) coefficient vector for

1In case it does not, we can always work with an extension of F of degree O(log r).

24

gj(t), and let ej be such that ej(i) = hj(i). Then the required conditions on the evaluations of
gj(t) can be written as the matrix-vector product Vcj = ej. Here V is the r× r Van der Monde
matrix for the points in [r], which is invertible because the underlying points are distinct (any
distinct r points work). We can therefore just solve for vj to obtain gj(t) in time poly(r).

In the k-variate setting, we work with the grid [w]k for w =
⌈
r1/k⌉. Following the same

steps, we obtain a matrix-vector product Vcj = ej for each k-variate g(t) with individual degree
(w− 1). Here the matrix V ∈ Fr×r is a “tensor product” of k copies of the (univariate) w× w
Van der Monde matrix for the points in [w], which is again invertible. The hitting set generator
g(t) is therefore again computable in time poly(r).

Although moving to an HSG from a hitting set may seem counter-intuitive, it is easier to
work with HSGs for some arguments. A canonical example for this is when we have a hitting
set H for a class C, and we wish to find a hitting set for the class C2 := {(p · q) : p, q ∈ C}.
Arguably the simplest way to do this is to obtain an HSG g from H, and the same HSG then
works for f g.

As we will soon see, it is sometimes easier to design a family of candidate HSGs for a class
C such that for any nonzero polynomial in C at least one of the HSGs works. The following
lemma gives us an easy way of obtaining a single HSG and a corresponding hitting set, in
such cases.

Lemma 2.13 (Combining HSGs). Let C be a class of n-variate, degree d polynomials and suppose
G = {g1(t[k]), . . . , gs(t[k])} is a family of k-variate, degree r polynomial maps, such that for every
nonzero C ∈ C, there exists j ∈ [s] for which C(gi(t)) is nonzero. Then for a fresh variable u, there
exists a (k + 1)-variate HSG g̃(t, u) of degree at most max(r, s) for C. Furthermore, if G was explicit
then g̃ is also explicit.

Proof. Again, the proof will use interpolation. Let gj(t) be the tuple (gj,1(t), gj,2(t), . . . , gj,n(t))
for every j ∈ [s]. For each i ∈ [n], we will define g̃(t, u) to be the unique polynomial of degree
at most s in u, such that g̃(t, α) = gα(t) for all α ∈ [s]. It is now easy to see that g̃(t) is an
(explicit) HSG of degree max(s, r) for C.

Note that in the above lemma, we also get a hitting set of size at most (srd)O(k+1) using
Lemma 2.11.

2.3.2 Designing Hitting Set Generators

We now list some explicit HSGs that we refer to in the thesis. On our way, we will also
describe a commonly used template for designing HSGs.

Kronecker map. Suppose we have a polynomial map ϕ(n,d)(t) such that for any n-variate,
degree-d polynomial f (x), we have that (i) for any monomial m ∈ supp(f), ϕ(n,d)(m) is a
monomial in t, and (ii) for any two distinct monomials m1, m2, ϕ(n,d)(m1) 6= ϕ(n,d)(m2). In
other words, ϕ(n,d) maps distinct monomials to distinct monomials. Observe that such a map

25

will be an HSG for the class of all n-variate, degree d polynomials. One way to achieve this is
to use the following map that maps every variable in x to monomials in t.

Definition 2.14 (Kronecker map). For any n, d ∈ N, the Kronecker map for n-variate, degree d
polynomials is given as follows.
κ(n,d)(x1) := t, κ(n,d)(x2) := t(d+1), · · · , κ(n,d)(xi) := t(d+1)(i−1)

, · · · , κ(n,d)(xn) := t(d+1)(n−1)
. ♦

Note that κ(n,d) basically views the exponent vectors of degree d monomials as numbers
in base (d + 1), and maps every xe to tval(e), where val(e) is the value of the “(d + 1)-ary
number” given by e, and therefore κ(n,d) maps distinct monomials in x to distinct monomials
in t. However, despite being an HSG for all n-variate, degree d polynomials, the Kronecker
map is very unwieldy as it has degree that is exponential in n (which gives another explicit
hitting set of size dO(n)).

Isolating Assignments

We saw that the Kronecker map just separates all monomials by mapping each monomial to
the value of its exponent vector, but requires very large degree. There are several (equally
easy) ways to see that any map that separates all n-variate, degree d monomials will never result
in an “efficient HSG”. Nevertheless, we can ask for an appropriate weakening of the above
requirement, such that it yields an efficient HSG for some non-trivial class.

First, let us see how we can build polynomial maps from what are called weight assignments
to variables.

Definition 2.15 (Weight assignment on monomials). For any n ∈ N, a function wt : [n] → N

can be seen as a weight assignment on a set of n-variate monomials by setting wt(xi) = wt(i)
and wt(xe) = ∑i∈[n] (ei ·wt(xi)). ♦

Let us now define a weakening of the requirement of separating all monomials that we saw
in the Kronecker map.

Definition 2.16 (Isolating weight assignment). LetM be a set of n-variate monomials and let wt
be a weight assignment on M. Then we say that wt isolates M if there is a unique minimum
weight monomial. That is there exists an m ∈ M such that for any m′ ∈ M, if m′ 6= m then
wt(m) < wt(m′).
Similarly, we say that wt isolates f (x), if wt isolates supp(f). ♦

As it turns out, in most cases it is impossible to design a single explicit assignment even
with this weaker property. We will therefore allow for a family of assignments that fulfil our
purpose.

Definition 2.17 (Family of isolating weight assignments). For a class of polynomials C and a
family of weight assignments W = {w1, . . . , wr}, we say that W isolates C if for all f ∈ C, there
exists an i ∈ [r] such that wi isolates f . ♦

Let us now return to our goal of designing potential HSGs, and see how families of
isolating weight assignments naturally give polynomial maps.

26

Definition 2.18 (Substitution map of an assignment). Let w : [n] → N be a weight assignment.
Then the substitution given by w, say ϕw, is the map given by ϕw(xi) = tw(i) for all i ∈ [n].
Note that ϕw(xe) = tw(xe) for all e ∈Nn, and the degree of ϕw is just maxi∈[n] w(i). ♦

We are now ready to see how isolating families suffice for designing HSGs, despite the
significantly weaker property (compared to separation).

Lemma 2.19. Let C be a class of n-variate polynomials and suppose W = {w1, . . . , wr} is a family
of weight assignments that isolates C. Then for the substitution maps ϕ1, . . . , ϕr, each given by
ϕj(xi) = twj(xi), we have that for any nonzero f ∈ C, there exists a j ∈ [r] such that ϕj(f) 6= 0.

Proof. Suppose 0 6= f ∈ C; hence there exists a wj that isolates supp(f). That is, under
the assignment wj, there is a unique minimum weight monomial m ∈ supp(f). Hence, for
f ′(t) = f (ϕj(x)), coeff f ′(twt(m)) = coeff f (m) 6= 0, which tells us that f ′ 6= 0.

Note that this lemma yields an explicit HSG using Lemma 2.13 and Lemma 2.11.

HSG for sparse polynomials. We are now ready to define the following weight assignment
(and the corresponding polynomial map) attributed to Klivans and Spielman [KS01], and
Agrawal and Biswas [AB03], that combines the Kronecker map with a “hashing argument” to
obtain an HSG for polynomials computed by depth-2 circuits (also called sparse polynomials).

Definition 2.20 ([KS01, AB03]). Let n, d, A ∈N, and let r = A2 · n · (d + 1). For the first r primes
p1, . . . , pr, the family W(n, d, A) consists of r weight assignments w1, . . . , wr; where for each i ∈ [n]
and j ∈ [r], wi(j) = (d + 1)(j−1) mod pi. ♦

Lemma 2.21 (Separating a set of monomials [KS01, AB03]). For all large enough n, d, A ∈ N,
let W(n, d, A) = {w1, . . . , wr} be as defined in Definition 2.20. Then for any set M of n-variate
monomials of total degree at most d with |M| ≤ A, there exists an i ∈ [r] for which wi assigns
distinct weights to all monomials inM.

Let Σ[s]Π[d](xn) be the class of n-variate, degree d polynomials that have a depth-2 circuit of
top fan-in at most s. Then the family of polynomial maps Φ(n,d,s) obtained from W(n, d, s) as per
Definition 2.18 gives an HSG for ΣsΠ≤d(n) using Lemma 2.19.

27

3 | Hitting Sets for Circuits with Re-
stricted Parse Trees

The main object of study in this chapter is the non-commutative model of Unique Parse Tree
(UPT) circuits introduced by Lagarde, Malod and Perifel [LMP19]. We construct quasipoly-
nomial hitting sets for this model and its closely related variants, essentially by extending the
scope of hitting sets for weaker models of non-commutative ABPs, and ROABPs1.

3.1 Non-commutative and Unique Parse Tree (UPT) circuits

Nisan [Nis91] introduced the non-commutative model, specifically the non-commutative alge-
braic branching programs (ABP). In his seminal paper, he showed that the non-commutative
versions of the determinant and permanent polynomials (among others) require exponen-
tial sized non-commutative ABPs to compute them. Limaye, Malod and Srinivasan [LMS16]
extended Nisan’s lower bound to non-commutative skew circuits, which are circuits where
every multiplication gate has at most one child that is a non-leaf. Lagarde, Malod and Perifel
[LMP19] initiated the study of non-commutative unambiguous circuits, or Unique Parse Tree
(UPT) circuits.

A parse tree of a circuit is obtained by starting at the root, and at every + gate choosing
exactly one child, and at every × gate choosing all its children (formally defined in Defi-
nition 3.6). Informally, a parse tree of a circuit is basically a certificate of computation of a
monomial in a circuit. Lagarde, Malod and Perifel [LMP19] introduced a subclass of non-
commutative circuits called Unique Parse Tree (UPT) circuits or unambiguous circuits where all
parse trees of the circuit have the same shape (formally defined in Definition 3.7). The class
of non-commutative UPT circuits subsumes the class of non-commutative ABPs as any ABP
can be expressed as a left-skew circuit.

Lagarde, Malod and Perifel [LMP19] extended the techniques of Nisan [Nis91] to give
exponential lower bounds for UPT circuits. Later, a lower bound against the class of circuits
with parse trees of not-too-many shapes (at most 2o(n) shapes) was shown by Lagarde, Limaye
and Srinivasan [LLS19].

In Figure 3.1, (a) is an example of a UPT circuit with (b) being the underlying parse tree

1The results in this chapter have appeared in [ST18].

29

shape; (c) is an example of a circuit with two distinct parse tree shapes.

+

× × ×

+ +

x1 x2 x3 x4

(a)

+

×

+

(b)

+

× × ×

+ +

x1 x2 x3 x4

(c)

Figure 3.1: Examples of circuits with restricted parse trees

A related model of set-depth-∆ formulas was studied by Agrawal, Saha and Saxena [ASS13]
that is a subclass of UPT circuits where the underlying parse trees are extremely regular2.
Arvind and Raja [AR16] also studied lower bounds for various subclasses of commutative
set-multilinear circuits. Some of the models they study include analogues of UPT and FewPT
circuits. They also proved lower bounds for UPT and FewPT set-multilinear circuits, and for
some other subclasses of set-multilinear circuits.

3.1.1 Polynomial identity testing

In the non-commutative world, Raz and Shpilka [RS05] gave the first deterministic polynomial
time white-box PIT for the class of non-commutative ABPs, building on the characterization
given by Nisan [Nis91]. Forbes and Shpilka [FS13] gave a quasipolynomial (nO(log n)) size
hitting set for non-commutative ABPs. This was achieved by studying a natural commutative
analogue of non-commutative ABPs, and this was the class of Read-Once Oblivious Algebraic
Branching Programs (ROABPs) where the variables are read in a “known order”.

The class of ROABPs is interesting in its own right owing to the connection with the “RL
vs L” question. In fact, much of the hitting set constructions for ROABPs has been inspired
by Nisan’s [Nis92] pseudorandom generator for RL (which has seed length O(log2 n)). As
mentioned earlier, Forbes and Shpilka gave a hitting set of size nO(log n) for polynomial sized
ROABPs when the order in which variables are read was known. Agrawal, Gurjar, Korwar
and Saxena [AGKS15] presented a different hitting set for the class of ROABPs that did not
need the knowledge of the order in which the variables were read. Subsequently, Gurjar,
Korwar, Saxena and Thierauf [GKST17] studied polynomials that can be computed as a sum
of constantly many ROABPs (of possibly different orders) and presented a polynomial time
white-box PIT, and also a quasipolynomial time black-box PIT for this class.

Lagarde, Malod and Perifel [LMP19], besides presenting lower bounds against UPT cir-
cuits, also gave a polynomial time white-box PIT for this class. This was extended by Lagarde,
Limaye and Srinivasan [LLS19] to a white-box algorithm for non-commutative circuits with

2the formula is levelled, and all nodes at a level have the same fan-in

30

constantly many parse tree shapes (analogous to the result of [GKST17]). The question of
constructing black-box PITs was left open by them, and we answer this in our work.

3.1.2 Results in this chapter

Polynomial Identity Testing

Our main results are hitting sets for the class of polynomials computed by UPT circuits and
related classes.

Theorem 3.1 (Hitting sets for UPT circuits). There is an explicit hitting set Hd,n,s of at most
(snd)O(log d) size for the class of degree d n-variate homogeneous non-commutative polynomials in
F 〈x〉 that are computed by UPT circuits of size at most s.

This result builds on the technique of basis isolating weight assignments first introduced
by [AGKS15] for constructing hitting sets for ROABPs. Furthermore, we can also extend
the hitting set to the class of non-commutative circuits that have few shapes (analogous to
[GKST17]’s hitting set for sum of few ROABPs).

Theorem 3.2 (Hitting sets for circuits with few parse tree shapes). There is an explicit hitting set
Hd,n,s,k of size at most (s2k

nd)O(log d) for the class of n-variate degree d homogeneous non-commutative
polynomials in F 〈x〉 that are computed by non-commutative circuits of size at most s consisting of
parse trees of at most k shapes.

Both the above theorems are fully black-box in the sense that it is not required to know the
underlying shape(s). For the case of non-commutative ABPs (and more generally, ROABPs
in a known order), Gurjar, Korwar and Saxena [GKS17] presented a more efficient hitting set
when the width of the ABP is small. For UPT circuits, there is a natural notion of preimage-
width of a UPT circuit (formally defined in Definition 3.8) that corresponds to the notion of
width of an ABP. We show an analogue of the hitting set of Gurjar, Korwar and Saxena for
the class of UPT circuits of small preimage-width if the underlying shape of the parse trees is
known.

Theorem 3.3 (Hitting sets for known-shape low-width UPT circuits). Let Cn,d,T,w be the class
of n-variate degree d non-commutative polynomials that are computable by UPT circuits of preimage-
width at most w and underlying parse-tree shape as T. Over any field of zero or large characteristic,
there is an explicit hitting set Hn,d,T,w of size wO(log d) poly(nd) for Cn,d,T,w.

These hitting sets also translate to the natural commutative analogues: UPT set-multilinear
circuits etc. (formally defined in Definition 3.25).

On our way towards extending the previously known hitting set constructions for ROABPs
[AGKS15, GKS17, GKST17] to the setting of UPT circuits, we prove some structural results
about UPT circuits and non-commutative ABPs. We shall now go over some of those results
briefly.

31

Structural results

If f is a non-commutative polynomial of degree d and if σ ∈ Sd is a permutation on d letters,
we define the shuffling of f by σ (denoted by ∆σ(f)) as the natural operation of permuting
each word of f according to σ.

The three PIT statements stated above begin with the following depth reduction statement
about UPT circuits.

Theorem 3.4 (Depth reduction for UPT circuits). Let f be an n-variate degree d polynomial that
is computable by a UPT circuit of preimage-width w. Then, there is some σ ∈ Sd such that ∆σ(f) can
be computed by a UPT circuit of O(log d) depth and preimage-width at most O(w2).

The above theorem implies that ∆σ(f) is computable by an ABP of quasipolynomial size.
We also show that this blow-up of quasipolynomial size is tight.

Theorem 3.5 (Separating UPT circuits and ABPs, under shuffling). There is an explicit n-variate
degree d non-commutative polynomial f that is computable by UPT circuits of preimage-width w =

poly(n, d) such that for every σ ∈ Sd, the polynomial ∆σ(f) requires non-commutative ABPs of size
(nd)Ω(log nd) to compute it.

We also extend the lower bound of [LMP19] to give a polynomial computed by a skew
circuit that requires exponential sized UPT circuits under any shuffling. Details are in Sec-
tion 3.8. Additionally, we also compare the model of constant width UPT circuits with non-
commutative formulas and ABPs, both with and without shufflings. We discuss those results
in Section 3.11.

3.1.3 Proof ideas

As mentioned, the starting point of all these results is the depth reduction. From a result
of Nisan [Nis91], the palindrome polynomial Pald

3 is known to require ABPs of size 2Ω(d)

even though it can be computed by a polynomial sized UPT circuit. Therefore, Pald cannot
be computed by a poly(d) sized circuit of depth o(d/ log d). The key insight here is that even
though Pald cannot be computed by small depth non-commutative circuits, a shuffling of the
palindrome is

∑
w1,...,wd∈[n]

xw1 xw1 xw2 xw2 · · · xwd xwd =
d

∏
i=1

(x1x1 + · · ·+ xnxn) ,

which is of course computable by even an O(log d) depth UPT formula. Hence we attempt to
reduce the depth under a suitable shuffling (see Definition 3.11).

In order to establish the depth reduction (Theorem 3.4) we follow the strategy of Valiant,
Skyum, Berkowitz and Rackoff [VSBR83] and Allender, Jiao, Mahajan and Vinay [AJMV98]
but make use of the UPT structure (work with different frontier nodes and gate quotients) based

3A definition can be found in Section 3.8.1.

32

on the underlying shape of the parse trees. The key ideas in our proof of depth reduction
were also used by Arvind and Raja [AR16] for a commutative analogue of UPT circuits4.

This depth reduction immediately yields that there is a quasipolynomial sized ABP com-
puting a shuffling of f . We show that this blow-up is tight (Theorem 3.5) by essentially follow-
ing the proof of Hrubeš and Yehudayoff [HY16] to separate monotone ABPs and monotone
circuits in the commutative world.

In order to obtain hitting sets for UPT circuits, one could potentially just use the fact that
there is a quasipolynomial sized ABP computing a shuffling of f and just use the known
hitting sets for non-commutative ABPs [FS13] to obtain a hitting set of poly(ndw)O(log2 d).
However, we directly work with the UPT circuit and lift the technique of basis isolating weight
assignments of Agrawal, Gurjar, Korwar and Saxena [AGKS15] to this more general setting to
obtain Theorem 3.1. Theorem 3.3 is a straightforward generalization of the ideas of Gurjar,
Korwar and Saxena [GKS17] once we observe that the depth reduction keeps the preimage-
width small.

Theorem 3.2 essentially follows the same ideas as those in the work of Gurjar, Korwar,
Saxena and Thierauf [GKST17]. The techniques of [GKST17] are general enough that once a
circuit class has a characterizing set of dependencies and a basis isolating weight assignment, there
is a natural method to lift the techniques to work with the sum of few elements from this
class. [GKST17] use this for ROABPs and we use this for UPT circuits.

To summarize, once we obtain the depth reduction, much of the results in this chap-
ter is a careful translation of prior work of [HY16], [AGKS15], [GKST17], [GKS17] to the
setting of UPT (or FewPT) circuits. Consequently, this also generalises the hitting sets of
[AGKS15, GKST17, GKS17] from ROABPs to UPT (or FewPT) set-multilinear circuits. Such a
generalization was unknown prior to this work.

3.2 Background

We would sometimes shift between the commutative and the non-commutative computation;
we therefore use x to talk about non-commutative variables, and y, z for commuting variables.

We use F 〈xn〉 to refer to the non-commutative ring of polynomials over x = {x}. For a
parameter d, we use F 〈x〉deg=d to refer to the set of polynomials in F 〈x〉 that are homoge-
neous and of degree d. Similarly, F 〈x〉deg≤d refers to the set of polynomials of degree at most
d.

We now provide some essential background that is specific to the results discussed in this
chapter.

3.2.1 Basic definitions

4This was pointed out to us after we had published a preprint of our work on arXiv.

33

UPT and FewPT circuits

Definition 3.6 (Parse trees). A parse tree T of a circuit C is a tree obtained as follows:

• the root of C is the root of T,

• if v ∈ T is a × gate, then all the children in C are the children of v in T in the same order,

• if v ∈ T is a + gate, then exactly one child of v in C is a child of v in T.

The value of the parse tree T, denoted by [T], is just the product of the leaf labels in T. ♦

Intuitively, a parse tree is a certificate that a monomial was produced in the computa-
tion of C (though it could potentially be cancelled by other parse trees computing the same
monomial). Therefore, if f is the polynomial computed by C, then

f = ∑
T is a parse tree

[T].

Definition 3.7. (UPT and FewPT circuits) A circuit C computing a homogeneous polynomial is said
to be a Unique Parse Tree (UPT) circuit if all parse trees of C have the same shape (that is, they are
identical except perhaps for the gate names).

A circuit C that computes a homogeneous polynomial is said to be a FewPT(k) circuit if the parse
trees of C have at most k distinct shapes. ♦

Definition 3.8 (Preimage-width). Suppose C is a UPT circuit and say T is the shape of the underly-
ing parse trees. For a node τ ∈ T and a gate g ∈ C, we shall say that g is a preimage of τ, denoted
by g ∼ τ, if and only if there is some parse tree T′ of C where the gate g appears in position τ.

The preimage-width of a UPT circuit C is the largest size of preimages of any node τ ∈ T. That
is,

preimage-width(C) = max
τ∈T
|{g ∈ C : g ∼ τ}| . ♦

It is clear that if C is a UPT circuit of preimage-width w computing a homogeneous degree
d polynomial, then the size of C is at most dw. The preimage-width of a UPT circuit is a more
useful measure to study than the size of the circuit. A simple concrete example of this is that
the standard conversion of homogeneous ABPs to homogeneous circuits in fact yields UPT
circuits. Furthermore, the width of the ABP is directly related to the preimage-width of the
resulting UPT circuit.

Observation 3.9. If f is computable by a width w homogeneous algebraic branching program, then f
can be equivalently computed by UPT circuits of preimage-width w2.

Infixions

Definition 3.10 (Infixion). For any d1, d2 ≥ 0 and p satisfying 0 ≤ p ≤ d2, define ×p as the unique
bilinear map ×p : F 〈x〉deg=d1

×F 〈x〉deg=d2
→ F 〈x〉deg=d1+d2

that satisfies

xw1 · · · xwd1
×p xv1 · · · xvd2

= xv1 · · · xvp xw1 · · · xwd1
xvp+1 · · · xvd2

.

34

We shall refer to this operation as a p-infixion 5. ♦

For instance, the usual multiplication (or concatenation) operation is just a 0-infixion (or ×0).

Shuffling of a polynomial

Definition 3.11 (Shuffling of a non-commutative polynomial). Let Pd(x) ∈ F 〈x〉deg=d be a
homogeneous degree d non-commutative polynomial. Given any permutation σ ∈ Sd over d-letters,
we can define the shuffling of Pd via σ as the unique linear map ∆σ : F 〈x〉deg=d → F 〈x〉deg=d that
is obtained by linearly extending

∆σ(xw1 · · · xwd) = xwσ(1) · · · xwσ(d) . ♦

3.2.2 Basic lemmas

Canonical UPT circuits, and types of gates

We shall say that a UPT circuit C with underlying parse tree shape T is canonical if for every
gate g ∈ C there is some node τ ∈ T such that every parse tree of C involving g has g only in
position τ. In other words, every gate of the circuit has a unique type associated with it.

Lemma 3.12 ([LMP19]). Suppose if f ∈ F 〈x〉 is a homogeneous, degree d, non-commutative polyno-
mial computed by a non-commutative UPT circuit of preimage-width w. Then, f can be equivalently
computed by a canonical UPT circuit of preimage-width w as well.

For a canonical UPT circuit where the parse trees have shape T, we shall say that g has
type τ if τ ∈ T is the unique node in T such that g ∼ τ.

Fix a τ ∈ T and let i be the number of leaves of the subtree rooted at τ, and let p be the
number of leaves to the left of τ in the inorder traversal of T. We shall then say that τ (or
a gate g ∈ C of type τ) has position-type (i, p). The following lemma allows us to write the
polynomial computed by the circuit as a small sum of p-infixions.

Lemma 3.13 ([LMP19]). Let f be a polynomial computed by a canonical UPT circuit C of preimage-
width w and say T is the shape of the underlying parse trees. If τ ∈ T with position-type (i, p), then
we can write f as

f (x) =
w

∑
r=1

gr(x)×p hr(x),

where deg gr = i and deg hr = deg(f)− i for all r = 1, . . . , w.

3.3 Depth reduction for UPT circuits

This section shall address Theorem 3.4, which we recall below.
5An infix is defined as “a formative element inserted in a word”. E.g. The plural of ‘spoonful’ is ‘spoonsful’,

obtained by adding the infix ‘s’.

35

Theorem 3.4 (Depth reduction for UPT circuits). Let f be an n-variate degree d polynomial that
is computable by a UPT circuit of preimage-width w. Then, there is some σ ∈ Sd such that ∆σ(f) can
be computed by a UPT circuit of O(log d) depth and preimage-width at most O(w2).

It was pointed out to us that a very similar depth reduction was also proved by Arvind
and Raja [AR16]. They showed that a commutative UPT set-multilinear circuit can be depth-
reduced to a corresponding quasi-polynomial sized O(log d) depth UPT set-multilinear for-
mula via Hyafil’s [Hya79] depth reduction. Using techniques similar to [VSBR83], one can
obtain a polynomial sized circuit of depth O(log d) while maintaining the UPT property.
Though this can be inferred from the results in [AR16], we state and prove it in the form
needed for the non-commutative setting.

3.3.1 UPT infixion-circuits

To prove the depth reduction, we will move to an intermediate model of UPT infixion-circuits.

Definition 3.14 (UPT infixion-circuits). The class of UPT infixion-circuits is a generalization of
homogeneous non-commutative circuits in that the internal gates are + gates and ×p gates instead of
the usual + and × gates. We shall also say that the circuit is semi-unbounded if all ×p gates have
fan-in bounded by 2 (with no restriction on + gates).

A parse tree for an infixion-circuit is similar to parse trees in a general non-commutative circuit
but the internal nodes of the parse tree are labelled by + and ×p (with the p specified at each gate).

We shall say that an infixion-circuit C is UPT if every parse tree is of the same shape. That is, two
parse trees in C can differ only in the gate names. ♦

To prove Theorem 3.4, we shall first depth reduce the circuit to obtain an infixion-circuit
computing f of O(log d) depth. Then, we will convert that to a UPT circuit that computes a
shuffling of f .

Lemma 3.15 (Depth reducing to infixion-circuits). Let f ∈ F 〈x〉 be a homogeneous degree d
polynomial that is computable by a UPT circuit of preimage-width s. Then, f can be equivalently be
computed by a semi-unbounded UPT infixion-circuit of preimage-width O(s2) and depth O(log d).

Proof. Let C be the UPT circuit computing f (x1, . . . , xn) and say T is the shape of the parse
trees of C. For any node τ ∈ T, let Fτ be the set of all gates in C whose position in T is τ. For
two gates u, v ∈ C, we shall say that u � v if the place of u in T is an ancestor of the place of
v in T. We shall abuse notation and use u � τ to mean that u’s position in T is an ancestor
of τ ∈ T. For a gate u ∈ C, let [u] refer to the polynomial computed at that gate. Similar to
[VSBR83, AJMV98], we define inductively the following notion of a gate quotient for any pair

36

of gates u, v ∈ C:

[u : v] =



0 if u � v,

1 if u = v,

[u1 : v] + [u2 : v] if u = u1 + u2,

[u1 : v] · [u2] if u = u1 × u2 and u1 � v,

[u1] · [u2 : v] if u = u1 × u2 and u2 � v.

Claim 3.16. For any u ∈ C, if τ ∈ T such that u � τ, then

[u] = ∑
w∈C
w∼τ

[w]×p [u : w] (3.17)

for a suitable p depending just on τ and the type of u. Furthermore, suppose u, v ∈ C
with v being a multiplication gate and if τ ∈ T such that u � τ � v then

[u : v] = ∑
w∈C
w∼τ

[w : v]×p [u : w]. (3.18)

for a suitable p depending just on τ and the type of u and v.

We’ll defer this proof to later and first finish the proof of Lemma 3.15. With (3.17) and (3.18),
we can construct the infixion-circuit C′ for f just as in [VSBR83, AJMV98]. The circuit C′

would have gates computing each [u] and [u : v] for nodes u, v ∈ C with u � v and v being a
multiplication gate. The wirings in C′ is built by appropriate applications of (3.17) and (3.18).

Let u ∈ C and say deg[u] = du. The plan would be to set up the computation in C′ so
that using an O(1) depth computation, we can compute [u] using gates whose degrees are
a constant factor smaller than du. Consider any parse tree rooted at u, and starting from u
follow the higher degree child. Let τ be the last point on the path with degree ≥ du/2 (degree
of its children will be < du/2). Applying (3.17),

[u] = ∑
w∼τ

[w]×p [u : w]

= ∑
w∼τ

([w1]× [w2])×p [u : w] where w = w1 × w2.

Now observe that each of the terms on the RHS, [u : w], [w1], [w2] have degree at most du/2,
as we wanted. Furthermore, all coordinates of the tuple ([u : w], [w1], [w2]) are all of the same
type as we run over all w ∼ τ.

We now need to show how to compute [u : v] for a pair u � v. Say deg[u] = du and
deg[v] = dv. For this, start with some parse tree rooted at u and walk down the path leading

37

to the place of v, and let τ be the last point on this path such that deg τ ≥ du+dv
2 . Using (3.18),

[u : v] = ∑
w∼τ

[w : v]×p [u : w]

= ∑
w∼τ

([w1]× [w2 : v])×p [u : w]

where w = w1×w2 and w2 � v (the other possibility is identical). By the choice of τ, we have
deg[u : w], deg[w2 : v] ≤ du−dv

2 . However, the best bound we can give on deg[w1] is du − dv.
Nevertheless, we can apply (3.17) again on [w1] by finding a suitable τ′ ≺ w1 satisfying
deg τ′ ≥ deg w1

2 and write

[u : v] = ∑
w∼τ

([w1]× [w2 : v])×p [u : w]

= ∑
w∼τ

((
∑

w′∼τ′
[w′]×p′ [w1 : w′]

)
× [w2 : v]

)
×p [u : w]

= ∑
w∼τ

∑
w′∼τ′

(((
[w′1]× [w′2]

)
×p′ [w1 : w′]

)
× [w2 : v]

)
×p [u : w]

By the choice of τ and τ′, each of the factors on the RHS have degree at most (du−dv)
2 as we

wanted. Furthermore, once again, all of the summands consists of similarly typed factors.

This naturally yields an infixion-circuit computing f of depth O(log d) and size poly(s).
Since all summands consist of similarly typed factors, it follows that the circuit is UPT as
well.

Proof of Claim 3.16. The proof is by induction. As a base case, suppose u ∼ τ. Then, [u]
is just the sum of the values of parse trees. Some of the parse trees use u. Of all nodes
w ∈ C such that w ∼ τ, only [u : u] = 1 and every other [u : w] = 0. Therefore, clearly
[u] = ∑w∼τ[w] · [u : w].

Now suppose u � τ and say we already know that [u′] = ∑w∼τ[w]×p [u′ : w] for every
u � u′ � τ. If u = u1 + u2, then

[u] = [u1] + [u2]

=

(
∑

w∼τ

[w]×p [u1 : w]

)
+

(
∑

w∼τ

[w]×p [u2 : w]

)
= ∑

w∼τ

[w]×p ([u1 : w] + [u2 : w])

= ∑
w∼τ

[w]×p [u : w].

Similarly, suppose [u] = [u1] × [u2]. We have two cases depending on whether u1 � τ or
u2 � τ.

38

If u1 � τ, then

[u] = [u1]× [u2]

=

(
∑

w∼τ

[w]×p [u1 : w]

)
× [u2]

= ∑
w∼τ

[w]×p ([u1 : w]× [u2])

= ∑
w∼τ

[w]×p [u : w].

If u2 � τ, then

[u] = [u1]× [u2]

= [u1]×
(

∑
w∼τ

[w]×p [u2 : w]

)
= ∑

w∼τ

[w]×p+deg u1 ([u1]× [u2 : w])

= ∑
w∼τ

[w]×p+d1 [u : w].

Essentially the same proof works for (3.18) as well.

Lemma 3.19 (Infixion-circuits to circuits for a shuffling). Let f ∈ F 〈x〉 be a homogeneous degree
d polynomial that is computable by a UPT infixion-circuit C′ of size s. Consider the circuit C′′ obtained
by replacing all ×p (infixion) gates in C′ by × gates. Then, C′′ computes ∆σ(f) for some σ ∈ Sd.

Proof. We shall prove this by induction. We need a slightly stronger inductive hypothesis
which is that the choice of permutation σ depends only on the shape of the parse trees in C′.

Say u is the root of C′. Suppose u is a + gate and say u = u1 + u2 + · · · + ur. If u′ =
u′1 + · · ·+ u′r is the resulting computation in C′′ then by the inductive hypothesis, we know
that there is a σ ∈ Sd such that [u′i] = ∆σ([ui]). Therefore,

[u′] =
r

∑
i=1

∆σ([ui]) = ∆σ([u]).

Suppose u = u1 ×p u2 with deg[u1] = d1 and deg[u2] = d2. Say u1 = ∑α∈[n]d1 aαxα and

∑β∈[n]d2 bβxβ. Then, [u] = ∑α,β aαbβ · xα ×p xβ. If u′, u′1 and u′2 is the resulting computation in
C′′, then

[u′] = [u′1]× [u′2]

= ∆σ1([u1])× ∆σ2([u2]) for some σ1 ∈ Sd1 , σ2 ∈ Sd2 ,

= ∑
α,β

aαbβ · (∆σ1(xα)× ∆σ2(xβ))

= ∑
α,β

aαbβ · ∆σ(xα ×p xβ) for some σ ∈ Sd,

= ∆σ([u])

Together, Lemma 3.15 and Lemma 3.19 yield Theorem 3.4. (Theorem 3.4)

The following corollary is immediate from the fact that any circuit of depth D and size s
can be computed by a formula of size sO(d) and hence an ABP of size sO(d).

Corollary 3.20. If f ∈ F 〈x〉 is a homogeneous degree d polynomial that is computable by a UPT
circuit of size s, then there is some σ ∈ Sd such that ∆σ(f) is computable by a non-commutative
algebraic branching program of size sO(log d).

39

Furthermore, the shuffling σ that permits this can also be efficiently computed given the underlying
shape for the circuit computing f .

3.3.2 UPT circuits of constant width

For a UPT circuit C, we shall say that its width is w if for every node τ in the shape T, there
are at most w gates of C that have type τ. The following observation is evident from the proof
of the above depth reduction.

Observation 3.21. If C is a UPT circuit of width w, then the depth reduced circuit C′ as obtained in
Theorem 3.4 has width O(w2).

This observation would allow us to yield a more efficient hitting set for the class of small
width known shape UPT circuits. Details are present in Section 3.9.2.

3.4 Separating ROABPs and UPT circuits

Theorem 3.5 (Separating UPT circuits and ABPs, under shuffling). There is an explicit n-variate
degree d non-commutative polynomial f that is computable by UPT circuits of preimage-width w =

poly(n, d) such that for every σ ∈ Sd, the polynomial ∆σ(f) requires non-commutative ABPs of size
(nd)Ω(log nd) to compute it.

The polynomial and the proof technique described here were introduced by Hrubeš and
Yehudayoff [HY16] to separate monotone circuits and monotone ABPs in the commutative
regime. The polynomial described here is a non-commutative analogue of the polynomial
used by [HY16]. Much of the proof is also the argument of [HY16] tailored to the non-
commutative setting.

3.4.1 The polynomial

Let Td denote the complete binary tree of depth d (with 2d leaves) and let D = 2d+1 − 1 refer
to the number of nodes in Td. We shall say that a colouring γ : Td → Zm is legal if for every
node u ∈ T, if v and w are the children of u then γ(u) = γ(v) + γ(w) mod m.

Let v1, . . . , vD be the vertices of Td listed in an in-order manner (left-subtree listed in-
ductively, then the root, and then the right-subtree listed inductively). We now define the
non-commutative polynomial Pd(x1, . . . , xm) ∈ F 〈x1, . . . , xm〉 of degree D = 2d+1 − 1 as

Pd(x1, . . . , xm) = ∑
γ∈[m]D

γ is legal

xγ(v1)xγ(v2) · · · xγ(vD). (3.22)

Lemma 3.23 (Upper bound). For every m, d > 0, the polynomial Pd(y1, . . . , ym) can be computed
by a non-commutative UPT circuit of size O(m2d) and preimage-width O(m2).

(Refer to Section 3.7 for a proof).

40

Theorem 3.24 (Lower bound). For every permutation σ ∈ SD, any non-commutative ABP comput-
ing the polynomial ∆σ(Pd) has width mΩ(d).

Hence for d = log m, we have that Pd(x1, . . . , xm) is computable by a UPT circuit of size
O(m2 log m) but for every σ ∈ SD the above theorem tells us that ∆σ(Pd) requires ABPs of
width mΩ(log m) to compute it. The lower bound follows on exactly same lines as the [HY16].
A proof is present in Section 3.7.

3.5 Hitting sets for non-commutative models

Commutative brethren of non-commutative models

This reduction to an appropriate commutative case was used by Forbes and Shpilka [FS13]
to reduce constructing hitting sets for non-commutative ABPs to hitting sets for commuta-
tive ROABPs (more precisely, to set-multilinear ABPs). They studied the image of the non-
commutative polynomial under the map Ψ : F 〈x〉deg=d → F[y1,1, . . . , yd,n] which is the unique
F-linear map given by Ψ : xw1 · · · xwd 7→ y1,w1 · · · yd,wd .

For the model of non-commutative UPT circuits, the appropriate commutative model is a
restriction of set-multilinear circuits that we call UPT set-multilinear (UPT-SML) circuits.

Definition 3.25 (Set-multilinear circuits). Let y = y1 t · · · t yd be a partition of the variables. A
circuit C computing a polynomial f ∈ F[y] is said to be a set-multilinear circuit with respect to the
above partition if:

• each gate g ∈ C is labelled by a subset Sg ⊆ [d] and g computes a polynomial over variables⋃
i∈Sg

yi where every monomial of [g] is divisible by exactly one variable in yi for each i ∈ Sg,

• if g is a + gate, then the subset that labels g also labels each of its children,

• if g is a × gate with g1 and g2 being its children, then the subsets Sg1 and Sg2 labelling g1 and
g2 respectively is a partition of Sg. That is, Sg = Sg1 t Sg2 . ♦

We shall say the circuit C is UPT set-multilinear if every parse tree of C is of the same shape and
identically labelled. That is, if g and g′ are × gates labelled by a set S ⊆ [d], and if g = g1 × g2 with
S1 and S2 labelling g1 and g2, then the children of g′ are also labelled by S1 and S2 respectively.

We shall say the set-multilinear circuit C is FewPT(k) set-multilinear if the circuit consists of
parse trees of at most k different shapes.

A natural generalization that will be useful later is a multi-output UPT set-multilinear cir-
cuit, which is a UPT set-multilinear circuit that potentially has multiple output gates, which
are all labelled with the same subset.

Forbes and Shpilka [FS13] showed that constructing hitting sets for these commutative
models suffices for the corresponding non-commutative models by a simple reduction (details
in Section 3.9.1). We shall therefore focus on these commutative models for the hitting set
constructions. And since we have already seen that such circuits can be depth reduced6

6the shuffling just reorders the partition of the set-multilinear circuit

41

to O(log d) depth, it suffices to construct a hitting set for O(log d)-depth UPT and FewPT
set-multilinear circuits.

3.5.1 Preliminaries for PIT

Weight assignments and basis isolation

To construct hitting sets for ROABPs, Agrawal, Gurjar, Korwar and Saxena [AGKS15] defined
the notion of basis isolating weight assignments for associated vector spaces of polynomials. The
description presented here is an adaptation of the approach of [AGKS15] to set-multilinear
circuits of small depth.

Definition 3.26 (Basis Isolating Weight Assignment (BIWA)). A weight assignment is a function
wt : y → [M]k, for some positive integer M, that can then be extended to all multilinear monomials
over y via

wt

(
∏
i∈S

yi

)
=

n

∑
i∈S

wt(yi). ♦

Let V be a vector space of polynomials in F[y], which can also be thought of as a matrix with a
generating set of polynomials listed out as rows (with each column being indexed by a monomial in y).

Such a weight assignment wt is said to be a basis isolating weight assignment for V if there
exists a basis of its column space, indexed by B ⊆ Mons(y), such that

1. if m1, m2 ∈ B and m1 6= m2, then wt(m1) 6= wt(m2),

2. for every m /∈ B,

Vm ∈ span
{

Vm′ : m′ ∈ B , wt(m′) ≺ wt(m)
}

where by Vm we mean the column of V indexed by the monomial m and ≺ is the lexicographic
ordering on Mk ⊂Nk.

Lemma 3.27 ([AGKS15]). Let V be a vector space of polynomials in F[y] and say f ∈ V. If wt :
y→ [M]k is a BIWA for V, then if t = {t1, . . . , tk}

f (y1, . . . , yn) 6= 0⇐⇒ f (twt(y1), · · · , twt(yn)) 6= 0

(where t(α1,...,αk) is short-hand for tα1
1 · · · t

αk
k).

If f 6= 0 and deg(f) ≤ d, then f (twt(y1), . . . , twt(yn)) is a non-zero k-variate polynomial
of degree at most dM. Hence, the polynomial identity lemma [Ore22, DL78, Zip79, Sch80]
would present a (dM + 1)k sized hitting set.

Definition 3.28 (Separating small sets of monomials). Let S be an arbitrary set of monomials over
y. We shall say that a weight assignment wt : y→ N separates S if for every distinct m, m′ ∈ S we

42

have wt(m) 6= wt(m′). ♦

Lemma 3.29 ([AB03]). Let S be an arbitrary set of r multilinear monomials of degree at most d over
variables y =

{
yij : i ∈ [d], j ∈ [n]

}
. For a prime p, let wp : y → N be a weight assignment given

by

wp(yi,j) = 2(i−1)n+(j−1) mod p.

Then for all but at most (r
2) · n2 primes p, the weight assignment wp separates S.

BIWAs for subspaces and products

Agrawal, Gurjar, Korwar and Saxena [AGKS15] constructed BIWAs for polynomials com-
puted by ROABPs. The following two lemmas are slight abstractions of the key ideas in
[AGKS15], so that they can also be applied in our setting. For the sake of completeness, the
proofs are provided in Observation 3.9.1.

Lemma 3.30 (BIWA for subspaces). Say V is a vector space of polynomials and suppose wt is a
BIWA for V. Then, if V ′ is a subspace of V, then wt is a BIWA for V ′ as well.

Lemma 3.31 (BIWA for variable disjoint products). Say V1 ⊆ F[y] and V2 ⊆ F[z] are two vector
spaces of polynomials over disjoint sets of variables, and of dimension at most s. Suppose

wt1 : y→Nk

wt2 : z→Nk

are BIWAs for V1 and V2 isolating bases B1 and B2 respectively. If w : y ∪ z → N is a weight
assignment that separates B1 · B2 = {m1m2 : m1 ∈ B1 , m2 ∈ B2}. Then the weight assignment
defined by

wt : y∪ z→Nk+1

wt : yi 7→ (wt1(yi), w(yi)) for all yi ∈ y,

wt : zi 7→ (wt2(zi), w(zi)) for all zi ∈ z,

is a BIWA for V = V1 ·V2 = span { f · g : f ∈ V1 , g ∈ V2}.

3.5.2 Hitting sets for UPT set-multilinear circuits

Theorem 3.32 (Hitting sets for UPT set-multilinear circuits). Let C be the class of n-variate degree
d set-multilinear polynomials (with respect to y = y1 t · · · t yd) that are computable by UPT set-
multilinear circuits of preimage-width w and depth r. Then, for M =

(
(w

2)n
2d + 1

)2, the set

H =

{
(b11, . . . , bdn) : p ∈ [M]r , ak ∈ A , bij =

r+1

∏
k=1

a2(i−1)n+(j−1) mod pi
k

}

43

is a hitting set for C of size poly(ndw)r.

The proof of this theorem is obtained by constructing what is called a basis isolating weight
assignment for polynomials simultaneously computed by a multi-output UPT-SML circuit,
heavily borrowing from the ideas in [AGKS15].

Proof. Suppose f (y) is a polynomial that is computable by a UPT set-multilinear circuit C
with respect to y = y1 t · · · t yd and say C is of preimage-width size w and depth r.

Since C is a UPT set-multilinear circuit, let T be the shape of the parse tree. For each
τ ∈ T, we define the vector space

Vτ = span {[g] : g ∈ C , g ∼ τ} .

The following claim relates the vector space corresponding to nodes in T to the vector spaces
corresponding to the children.

Claim 3.33. If τ ∈ T labels a + gate and if τ′ is the unique child of τ, then Vτ ⊆ Vτ′ .
If τ ∈ T labels a × gate and has children τ1 and τ2, then Vτ is a subspace of Vτ1 ·Vτ2 .

Proof. Suppose τ ∈ T labels a + gate and say τ′ is the unique child of τ in T. Pick
an arbitrary g ∈ C such that g ∼ τ. If [g] = [g1] + · · ·+ [gs], then each gi ∼ τ′.
Therefore, [gi] ∈ Vτ′ and [g] = [g1] + · · · + [gs] implies that [g] ∈ Vτ′ . Since the
choice of g was an arbitrary gate of type τ, it follows that Vτ is a subspace of Vτ′ .

Say τ labels a × gate, and say τ1 and τ2 are the children of τ. Pick an arbitrary
gate g ∈ C with g ∼ τ. If [g] = [g1] × [g2] then g1 ∼ τ1 and g2 ∼ τ2. But that
implies that [g1] ∈ Vτ1 and [g2] ∈ Vτ2 and therefore [g] ∈ Vτ1 · Vτ2 . Once again,
since the choice of g was arbitrary, we get Vτ is a subspace of Vτ1 ·Vτ2 . (Claim 3.33)

Define the multiplication height of any gate g, denoted by |g|×, as the largest number of ×
gates encountered on a path from g to a leaf. Starting with the leaves, we shall build towards
a BIWA for Vroot, which by Lemma 3.27 also yields a hitting set.

Let P be the set of the first (dn2(w
2) + 1) primes. For each 0 ≤ k ≤ r and p = (p1, . . . , pk) ∈

Pk, define the function

Ω(k)
p : y→Nk+1

Ω(k)
p : yij 7→ (j, 2(i−1)n+(j−1) mod p1, . . . , 2(i−1)n+(j−1) mod pk).

The plan is to use Ω(k)
p to build BIWAs for each Vτ. For a τ ∈ T with |τ|× = k, let Sτ ⊆ [d] be

the subset of indices labelling τ. Define wt(τ)p to be the restriction of Ω(k)
p to ∪i∈Sτ

yi:

wt(τ)p :
⋃

i∈Sτ

yi →Nk+1

wt(τ)p (yij) = Ω(k)
p (yij).

44

We shall prove, by induction, that for each 0 ≤ k ≤ r there is a p ∈ Pk such that for every
τ ∈ T with |τ|× ≤ k, the weight assignment wt(k)p is a BIWA for Vτ.

If τ was a leaf of T, then any such node just computes a variable. Clearly, wt(τ)p : (yij) 7→ j
is a BIWA as it gives distinct weights to all variables of a partition. Hence, wt(τ)p is a BIWA
for all Vτ whenever τ is a leaf.

If τ is not a leaf but |τ|× = 0, then neither τ nor its descendants are × gates. Hence, the
subtree at τ has a unique leaf ` and all the nodes along this path are + gates. By Claim 3.33,
Vτ is a subspace of V` and hence, by Lemma 3.30, wt(τ)p = wt(`)p is a BIWA for Vτ. That finishes
the base case of k = 0.

Suppose we have proved the claim up to k− 1. Let Tk be the set of all nodes of multipli-
cation height at most k that are × gates. By the inductive hypothesis, there exists p ∈ Pk−1

such that wt(τ
′)

p is BIWA for all Vτ′ with |τ′|× < k. Fix such a p. For each τ ∈ Tk, its children
τ1, τ2 must have multiplication height at most k− 1. Since C is set-multilinear, the subset of
indices that label τ1 and τ2 must be disjoint. Say S1 and S2 are the subsets of indices labelling
τ1 and τ2 respectively.

Hence, by Claim 3.33, Vτ is a subspace of Vτ1 ·Vτ2 . By our inductive hypothesis, we know
that wt(τ1)

p and wt(τ2)
p are BIWAs for Vτ1 and Vτ2 respectively. Observe that Ω(k−1)

p restricted to
the appropriate subset of variables is a refinement of the weight assignments wt(τ1)

p and wt(τ2)
p

(as |τ1|× or |τ2|× could have been smaller than k − 1). Nevertheless, if wt(τ1)
p and wt(τ2)

p are
BIWAs for Vτ1 and Vτ2 respectively, then the following weight assignments

wt1 :
⋃

i∈S1

yi →Nk wt2 :
⋃

i∈S2

yi →Nk

wt1 : yij 7→ Ω(k−1)
p (yij) wt2 : yij 7→ Ω(k−1)

p (yij)

are also BIWAs for Vτ1 and Vτ2 respectively. It follows from Lemma 3.31, Lemma 3.30 and
Lemma 3.29, that besides perhaps (w

2)n
2 primes p ∈ P, the weight assignment defined by

wt :
⋃

i∈S1∪S2

yi →Nk+1

wt(yij) =

(wt1(yij), 2(i−1)n+(j−1) mod p) if i ∈ S1,

(wt2(yij), 2(i−1)n+(j−1) mod p) if i ∈ S2,

= (Ω(k−1)
p (yij), 2in+j mod p)

is a BIWA for Vτ. For different τs in Tk there may a different set of (w
2)n

2 primes that we
should exclude. But since the set P of primes is at least (w

2)n
2d + 1, there is a prime p ∈ P

for which wt(yij) = (Ω(k−1)
p , 2(i−1)n+(j−1) mod p) is a BIWA for every Vτ where τ ∈ Tk. By

extending p by p in the last coordinate, this shows that there is a p′ ∈ Pk such that for each
τ ∈ Tk, the weight assignment wt(τ)p′ is a BIWA for Vτ.

To complete the inductive step, we also need to prove the same for τ ∈ T that are + gates
with |τ|× = k. Hence, there must be a × gate τ′ ∈ Tk that is a descendant of τ such that the

45

path from τ to τ′ consists only of + gates. Once again, this forces wt(τ)p = wt(τ
′)

p and Vτ is
a subspace of Vτ′ . Hence, by Claim 3.33 and Lemma 3.30, it follows that wt(τ)p = wt(τ

′)
p is a

BIWA for Vτ as well. And that completes the proof of the inductive step.

Hence, if f is a polynomial computed by a preimage-width w UPT set-multilinear circuit
of depth r, Ω(r)

p is a BIWA for Vroot. Furthermore, by the prime number theorem, we know
that the

(
(w

2)n
2d + 1

)
-th prime cannot be bigger than

(
(w

2)n
2d + 1

)2. Hence, the constructed
BIWA is in fact a map

Ω(r)
p : y→ [M]r+1

where M ≤
(
(w

2)n
2d + 1

)2. Therefore, by Lemma 3.27 and the polynomial identity lemma, if
we pick a set A ⊆ F with |A| > d ·

(
(w

2)n
2d + 1

)2, then

H =

{
(b11, . . . , bdn) : p ∈ [M]r , ak ∈ A , bij =

r+1

∏
k=1

a2(i−1)n+(j−1) mod pi
k

}

is a hitting set for UPT set-multilinear circuits of preimage-width w and depth r, such that
|H| = poly ((ndw)r).

3.5.3 Poly-sized hitting sets for constant width UPT circuits

Theorem 3.3 (Hitting sets for known-shape low-width UPT circuits). Let Cn,d,T,w be the class
of n-variate degree d non-commutative polynomials that are computable by UPT circuits of preimage-
width at most w and underlying parse-tree shape as T. Over any field of zero or large characteristic,
there is an explicit hitting set Hn,d,T,w of size wO(log d) poly(nd) for Cn,d,T,w.

The proof is an easy extension of the ideas from [GKS17], the details of which are in Sec-
tion 3.9.2.

3.6 FewPT circuits

In this section we describe the black-box identity test for FewPT(k) circuits. The following
lemma from [LLS19] shows that this class is equivalent to polynomials computed by sum of
k UPT circuits (of possibly different shapes).

3.6.1 Preliminaries

Lemma 3.34. ([LLS19, Lemma 16]) Let f (x) be a polynomial computed by FewPT(k) circuit of
preimage-width w. Then f can be equivalently computed by a sum of k UPT circuits of preimage-
width w each.

46

Like in [LLS19], we’ll refer to this class by FewPT(k). We shall further qualify this notation
to use FewPT(k)(w) to denote the class of circuits that is a sum of k UPT circuits of preimage-
width w.

From this lemma, we can just work with Σk UPT-SML circuits. The proof largely follows
the ideas of Gurjar, Korwar, Saxena and Thierauf [GKST17]7.

Notation

Let y = y1 t · · · t yd be a partition of the variables and let S =
{

s1, . . . , sp
}

be a subset of [d].
Define the set of variables yS = ys1 ∪ · · · ∪ ysp and the set of monomials yS = ys1 × · · · × ysp .
Also, define y−S = y \ yS and y−S = y[d]\S.

Definition 3.35 (Coefficient operator). Given a set-multilinear polynomial f = ∑m∈y[d] αmm of
degree d, for S ⊆ [d] and a monomial m ∈ yS, define coeffm : F [y]→ F [y−S] to be as follows.

coeffm(f) = ∑
m′∈y−S

α(m·m′)m
′

where α(m·m′) is the coefficient of mm′ in f . ♦

Lemma 3.36. Let y = y1 t . . . t yd be a partition and f (y) be a set-multilinear polynomial (with
respect to the above partition) computed by a UPT-SML circuit of preimage-width w and underlying
parse-tree shape T. Suppose g(y) is another set-multilinear polynomial (under the same partition) that
cannot be computed by a UPT-SML circuit of preimage-width w with the same shape T.

Then, there exists S ⊆ [d] and R ∈ F[yS]
1×w′ , and P, Q ∈ F[y−S]

w′×1 with w′ ≤ w2 such that:

• For each i ∈ [w′], there is a monomial mi ∈ yS such that the i-th element of P and Q is
coeffmi(f) and coeffmi(g) respectively,

• there is a vector Γ ∈ F1×w′ of support size at most w + 1 such that ΓP = 0 and ΓQ 6= 0,

• the coefficient space of R is full-rank. That is, if we interpret R as a matrix over F by listing each
of its w′ entries as a column vector of coefficients, then this matrix has full column-rank.

• the vector of polynomials R is simultaneously computable by a UPT-SML circuit of preimage-
width at most w′.

This lemma is a fairly natural and straightforward generalization of [GKST17, Lemma 4.5]
and a proof of this is provided in Section 3.10.

Lemma 3.37. Suppose f (y) is a non-zero polynomial computed by a Σk UPT-SML(w) circuit. Sup-
pose wt : y→ Mr is a weight assignment that satisfies the following properties:

• wt is a BIWA for spaces of polynomials simultaneously computed by UPT-SML circuits of
preimage-width at most w(w + 1),

7[GKST17] constructed hitting sets for sums of ROABPs and we use similar techniques for sums of UPT
circuits. Roughly speaking, if we have a class C that has a characterizing set of dependencies for which we know how
to construct BIWAs, then we can also construct hitting sets for ΣkC.

47

• For any g in Σk−1 UPT-SML(w(w + 1)), the polynomial g(y+ twt) ∈ F(t)[y] has a monomial
with non-zero coefficient that depends on at most ` distinct variables in y.

Then, the polynomial f (y + twt) has a monomial, depending on at most log(w(w + 1)) + ` distinct
variables in y, with a non-zero coefficient.

This is essentially a restatement of [GKST17, Lemma 4.6, Lemma 4.8] and follows from
their proof. Unravelling the recursion, we get the following corollary.

Corollary 3.38. Let f (y) be a non-zero polynomial that can computed by a Σk UPT-SML(w) circuit.
Suppose wt : y→ Mr is a BIWA for the class of polynomials simultaneously computed by UPT-SML
circuits of preimage-width at most w2O(k)

. Then, the polynomial f (y + twt) ∈ F(t)[y] has a monomial
with a non-zero coefficient that depends on at most 2O(k) log w variables in y.

Once we are guaranteed to retain a monomial of small-support, we can construct a hitting
set by enumerating over all possible supports and applying the polynomial identity lemma (or
apply standard generators such as the Shpilka-Volkovich generator [SV15]). This completes
the proof of Theorem 3.2, which we restate below for convenience.

Theorem 3.2 (Hitting sets for circuits with few parse tree shapes). There is an explicit hitting set
Hd,n,s,k of size at most (s2k

nd)O(log d) for the class of n-variate degree d homogeneous non-commutative
polynomials in F 〈x〉 that are computed by non-commutative circuits of size at most s consisting of
parse trees of at most k shapes.

3.7 Separating ABPs from UPT circuits

This section contains the proofs of the separation between ABPs and UPT circuits. Recall the
definition of the polynomial Pd (of degree D = 2d+1 − 1).

Pd(x1, . . . , xm) = ∑
γ∈[m]D

γ is legal

xγ(v1)xγ(v2) · · · xγ(vD).

Upper bound

Lemma 3.23 (Upper bound). For every m, d > 0, the polynomial Pd(y1, . . . , ym) can be computed
by a non-commutative UPT circuit of size O(m2d) and preimage-width O(m2).

Proof. Let G(d, α) be the set of all legal colourings γ with v2d (root of Td) satisfying γ(v2d) = α.
Now we define Pd,α(x1, . . . , xm) as

Pd,α(x1, . . . , xm) = ∑
γ∈G(d,α)

xγ(v1)xγ(v2) · · · xγ(vD).

Clearly, Pd(x1, . . . , xm) = ∑α∈[m] Pd,α(x1, . . . , xm). Therefore we can now recursively write

Pd,α(x1, . . . , xm) = ∑
β∈[m]

Pd−1,β(x1, . . . , xm) · xα · Pd−1,(α−mβ)(x1, . . . , xm), (3.39)

48

where α−m β = (α− β) mod m.
Now using (3.39) it is easy to see that if we have UPT circuits with O(m2k) gates simul-

taneously computing the polynomials Pk,α(x1, . . . , xm) for any k ≤ d− 1 and all α ∈ [m], then
a UPT circuit with O(m2d) gates computing Pd(x1, . . . , xm) can be obtained and this follows
directly by induction. Hence, repeated application of (3.39) yields a UPT circuit computing Pd

of size O(m2d). It is also easy to see that the preimage-width of such a UPT circuit is at most
O(m2), as there are no more than O(m2) computing polynomials of the same degree.

Lower bound

As mentioned earlier, much of the lower bound argument is exactly along the lines of the
proof of [HY16]. The modifications required from their proof are quite minor but we present
the proof here for completeness.

Theorem 3.24 (Lower bound). For every permutation σ ∈ SD, any non-commutative ABP comput-
ing the polynomial ∆σ(Pd) has width mΩ(d).

Proof. Let us fix some σ ∈ SD and let Q(x1, . . . , xm) = ∆σ(Pd). In order to show that Q
requires ABPs of large width, it suffices to show that there exists some 0 ≤ k ≤ D for which
the partial derivative matrix, given by

Mk(Q) = [m]k

[m]D−k

w

w′

coefficient of xw · xw′ in Q

has rank at least mΩ(d). We shall prove this by exhibiting an r × r identity matrix as a sub-
matrix in Mk(Q) with r = mΩ(d). The k that we will work with would be the number whose
binary expansion is 10101 · · · . The relevance for this comes from the fact that the edge bound-
ary of any subset V0 ⊆ Td is with |V0| = k for such a k is reasonably large.

Definition 3.40 (Isoperimetric profile of graphs). Given a graph G = (V(G), E(G)) and a subset
of vertices A ⊆ V(G), edge isoperimetric profile of G is given by the following function eip(k) defined
by

eipG(k) = min
{∣∣E(A, A)

∣∣ : A ⊆ V(G), |A| = k
}

,

where E(A, A) is the set of edges with one end-point in A and the other outside. ♦

Lemma 3.41. [HY16] If k ≤ D is the number whose binary expansion is 1010 · · · , then eipTd
(k) ≥ d

4 .

The relevance for this would become apparent shortly, but let us proceed for now. If there
is indeed an ABP for a shuffling of f , then the rows of Mk(Q) is just a partial colouring of

49

a subset V0 ⊂ Td of size exactly k. Similarly, the columns of Mk(Q) are partial colourings
of V1 := Td \ V0. Therefore Mk(Q)(xw,xw′)

is 1 only if the colouring of V0 given by xw and
that of V1 given by xw′ together form a legal colouring of Td. Hence the task of finding an
r × r submatrix of Mk(Q) reduces to finding colourings C1, C2, . . . , Cr of V0 and colourings
C′1, C′2, . . . , C′r of V1 such that the colouring Ci ◦ C′j is legal if and only if i = j, for all i, j ∈ [r].

We will need the notion of pure nodes (as defined by [HY16]).

Definition 3.42. (Pure nodes). For i ∈ {0, 1}, a non-leaf node v in Vi is called said to be pure
if there is a path Π = (v, v1, v2, . . . , vk) in Td where vk is a leaf that is a descendant of v, and
Π ∩Vi = {v}. ♦

There may be multiple witnesses vk for the fact that v is a pure node. For each pure node,
we shall assign one leaf arbitrarily as its pure leaf. It is easy to see that the pure leaves are
distinct for each pure node.

Let the pure nodes in V0 be P0 and those in V1 be P1 and say P := P0 ∪ P1. Let `(P), `(P0)

and `(P1) be the pure leaves of P, P0 and P1 respectively.

Lemma 3.43. ([HY16, Claim 11]) |P| ≥ |E(V0,V1)|
4 .

Without loss of generality, we may assume that P0 is bigger than P1 and the above lemma,
in conjunction with Lemma 3.41, gives that |P0| ≥ d/32. We are now ready to define our
colourings C1, . . . , Cr and C′1, . . . , C′r for r = m|P0| ≥ md/32.

Let L be the set of all leaves in Td. For each ci ∈ [m]|P0|, define C̃i : Td → Zm obtained by
assigning colour 1 to all leaves in L \ `(P0), assigning ci to the leaves in `(P0) and extending
it uniquely to the other vertices of Td in order to make it legal. The partial colourings Ci and
C′i be the restriction of C̃i to V0 and V1 respectively.

Clearly, Ci ◦ C′i = C̃i and hence is a valid colouring. Now consider Ci and C′j for i 6= j.
There must exist some leaf v ∈ `(P0) that gets different colours in Ci and Cj and let u be the
node in P1 that v was a pure leaf of. We shall assume that u is minimal in the sense that any
pure node u′ ∈ P1 that is a descendant has all its leaves identically coloured in Ci and Cj. But
then, the colour of u in C̃i and in C̃j cannot be the same as exactly one leaf if u has a different
colour in C̃i and C̃j respectively. This would then imply that Ci forces u to be given a colour
different than what C′j assigns and hence Ci ◦ C′j is not legal.

Therefore, this shows that the matrix Mk(Q) has an r × r identity submatrix with r ≥
md/32. Therefore, any ABP computing Q must have width at least mΩ(d).

3.8 Exponential lower bound under any shuffling

Here we give an explicit polynomial that has polynomial sized arithmetic circuits but requires
exponential sized UPT circuits under any shuffling. A version of the hard polynomial appears
in [LMP19]. They show that the polynomial requires exponential sized UPT circuits and that
it is efficiently computable by what are known as skew circuits (see [LMP19] for a formal

50

definition). Here we extend the lower bound and show that it applies to any shuffling of the
polynomial.

3.8.1 The polynomial

The hard polynomial we discuss is called the moving palindrome which is a variant of the
palindrome polynomial. The palindrome polynomial of degree d on n variables, as known, is
defined as follows.

Pald(x1, . . . , xn) := ∑
w∈{x1,...,xn}d/2

w · wR

where wR denotes the reverse of the word w.
Using this definition, we define the (n+ 1)-variate moving palindrome of degree D as follows.

Palmov
D (x1, . . . , xn, z) := ∑

0≤`≤D/2
z` · Pal D

2
(x1, . . . , xn) · z

D
2 −`

3.8.2 The lower bound

Similar to the matrix Mk defined in Section 3.7 for a commutative polynomial, define a partial
derivative matrix M(i,p) for a non-commutative polynomial g. Here the (w, w′) entry of M(i,p)

will be the coefficient of w×p w′ in g, where deg(w) = i. We will show that M(i,p) for Palmov
D

has rank nΩ(D) for a range of types (i, p), such that any UPT circuit computing any shuffling of
Palmov

D must admit at least one of those types. Then using the characterization from [LMP19],
we will conclude the following theorem.

Theorem 3.44. For any σ ∈ SD, a UPT circuit computing ∆σ(Palmov
D) has nΩ(D) gates.

Proof. Let 2d be the degree of the palindrome, so that Palmov
D has degree D = 4d. Also, let

P`(x, z) = z` Pal2d(x)z2d−`. Therefore Palmov
D = ∑2d

`=0 P`(x, z) = f (x, z) (say). For P`, and for
` < j1, j2 ≤ 4d− `, we will say that j1 and j2 are dependent with respect to P` if all monomials
in P` contain the same variable in positions j1 and j2. It is easy to see that the criterion
j1 + j2 = 2(d + `) + 1 captures this relation. Define a dependency graph G` = (V, E`) with
V = {1, 2, . . . , 4d} such that (j1, j2) ∈ E` if and only if j1 and j2 are dependent with respect to
P`. Let G = (V, E) with E = ∪`E`.

If [4d] = V0 t V1 is a partition, let us define a matrix M̃V0,V1(f) to be the one where rows
and columns are indexed by a partial assignment to the positions V0 and V1 respectively.

Claim 3.45. Let [4d] = V0 t V1 be a partition of the positions, and suppose that for some ` ∈
{0, . . . , 2d} we have t edges in E` crossing the cut (V0, V1) in G`. Then, rank

(
M̃V0,V1(f)

)
≥ nt.

Proof. In the polynomial P`, let Z` ⊆ [4d] be the positions that are fixed to z. Consider the
submatrix of M̃V0,V1 where V0 ∩ Z` and V1 ∩ Z` are assigned to z. Observe that this submatrix
is precisely M̃V′0 ,V′1

(P`) where V ′0 = V0 ∩ Z` and V ′1 = V1 ∩ Z`.

51

If we have t edges crossing the cut (V ′0, V ′1) (none of the cut edges can be adjacent on
Z`), then we have a size t matching in (V ′0, V ′1). This means that fixing the variables in their
V ′0 end-points uniquely fixes their V ′1 end-points. Hence, it is clear that we have an nt × nt

identity submatrix and hence that the rank of M̃V0,V1(f) is at least nt.

The next claim shows that for any V0 in a fairly wide range of sizes, there will always be
some ` with G` exhibiting a large cut.

Claim 3.46. For any set V0 ⊆ [4d] of size k with d
6 ≤ k ≤ d

3 , there is some ` ∈ {0, . . . , 2d} such that
Ω(d) edges in E` cross the cut (V0, V1).

Proof. Let V0 be a set of k positions with k ≤ d
3 . Let us partition the set of positions V =

{1, 2, . . . , 4d} into blocks of size k,(2d− 2k), and k, and k,(2d− 2k), and k, labelled S1, M1 and
T1, and T2, M2 and S2, respectively. We illustrate such a partition below.

1 k (k + 1) (2d− k) (2d− k + 1) 2d (2d + 1) (2d + k) (2d + k + 1) (4d− k) (4d− k + 1) D

S1 M1 T1 T2 M2 S2

Now the possible choices for V0 can be split into the following (possibly overlapping)
cases:

1. V0 ∩ T1 ≥ k
8 :

Note that the degree of any vertex in T1 is at least (2d − k), and that every even (or
odd) vertex in M1 is connected to every odd (or even) vertex in S2. Now V1 ∩M1 is at
least 2d− k − (k − k

8) ≥ 2(d− k). Total number of edges crossing (V0, V1) is therefore
≥ |(V0 ∩ T1, V1 ∩M1)| ≥ 2

(
1
4 × (d− k)× k

8

)
= Ω(dk). Therefore there exists an Ei that

achieves the average Ω(k) = Ω(d) edges crossing the cut (V0, V1).

2. V0 ∩ S1 ≥ k
4 :

Consider the neighbourhood of V0 ∪ S1 due to E0. All these positions are in T1. If more
than k

8 of them are in V0 then case 1 applies. Else we get that ≥ k
8 edges from E0 cross

(V0, V1).

3. V0 ∩M1 ≥ k
4 :

Again, every even (or odd) position in M1 is connected to every odd (or even) position
in T1, the degree of every position in M1 is at least k, and |V1 ∩ T1| ≥ k

8 . Therefore a
total of Ω(k2) edges cross (V0, V1), thereby again giving us that some Ei achieves Ω(d)
edges crossing (V0, V1).

Since the other cases (with T2, S2, M2) are symmetric to those discussed above, we can con-
clude the statement of the claim.

In order to complete the proof, we just need to show that any UPT circuit computing a
homogeneous degree d polynomial, there will be a gate of position-type (i, p) with d

6 ≤ i ≤ d
3 .

52

Lemma 3.47. For all 0 < α < 1
2 , any UPT circuit (with fan-in 2 × gates) computing a polynomial of

degree D contains a gate computing a degree i polynomial for some αD ≤ i ≤ 2αD.

Sketch of Proof. Let C be a UPT circuit computing a degree D polynomial with multiplication
gates of fan-in 2. Starting from the root of C, choose an arbitrary child at every addition gate
and the child computing a higher degree polynomial at every multiplication gate. As the
degree never drops to a fraction less than half in any step, we eventually reach an appropriate
gate.

Now Lemma 3.47 tells us that for any UPT circuit computing ∆σ(Palmov
D), will have a gate

of position-type (i, p) with D
24 ≤ i ≤ D

12 . We can then apply Claim 3.46 and then Claim 3.45 to
obtain an nΩ(D) lower bound on the number of gates in C.

3.9 Hitting sets for UPT circuits

3.9.1 Commutative analogue of UPT circuits

Consider substitution map Φ : {x} → F[y1,1, . . . , yd,n]
(d+1)×(d+1) given by

Φ(xi) =



0 y1,i 0 . . . 0 0
0 0 y2,i . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 yd,i

0 0 0 . . . 0 0


, for all i ∈ [n].

To understand the effect of Φ on a homogeneous non-commutative polynomial f (x) of degree
d, define Ψ : F 〈x〉deg=d → F[y1,1, . . . , yd,n] as the unique F-linear map given by
Ψ : xw1 · · · xwd 7→ y1,w1 · · · yd,wd .

Lemma 3.48 ([FS13]). Let f = ∑w awxw ∈ F 〈x〉 be a homogeneous degree d non-commutative
polynomial. Then, f under the substitution map Φ (defined above) is given by

f ◦Φ = f (Φ(x1), . . . , Φ(xn)) =


0 · · · 0 Ψ(f)
0 · · · 0 0
...

. . .
...

...
0 0 0 0


(d+1)×(d+1)

Similar to the above definition of Ψ, we define a shifted version of it called Ψa (for a
parameter a ∈N) as Ψa : xw1 · · · xwd 7→ ya+1,w1 · · · ya+d,wd .

Observation 3.49. If f ∈ F 〈x〉deg=d1
and g ∈ F 〈x〉deg=d2

, then for any a ∈N, we have Ψa(f · g) =
Ψa(f) ·Ψa+d1(g).

53

In the case of [FS13], when f was computable by non-commutative ABPs, they showed
that Ψ(f) is computable by an ROABP. In our setting of non-commutative UPT circuits, the
following is the commutative analogue.

Observation 3.50. Let C be a UPT circuit computing a polynomial f ∈ F 〈x〉 of size s and depth
r. Consider the commutative circuit C′ where each leaf variable of type (1, p) that is labelled by xi is
replaced by yp+1,i. Then the circuit C′ computes Ψ(f) and is UPT and set-multilinear with respect to
y = y1 t · · · t yd where yi =

{
yi,j : j ∈ [n]

}
.

BIWAs for subspaces and products

Lemma 3.30 (BIWA for subspaces). Say V is a vector space of polynomials and suppose wt is a
BIWA for V. Then, if V ′ is a subspace of V, then wt is a BIWA for V ′ as well.

Proof. If B is a monomial basis of V that is isolated by wt, then the columns indexed by B
span the column space of V ′ as well. Starting with the columns of V ′ indexed by B, pick a
minimum weight basis B′ according to wt, so that any column of V ′ that is outside B′ is spanned
by lower weight monomials in B′. By definition wt is a BIWA of V ′ isolating B′, as all columns
in B′ get distinct weights and every column outside B′ is spanned by lower weight columns
in B′.

Lemma 3.31 (BIWA for variable disjoint products). Say V1 ⊆ F[y] and V2 ⊆ F[z] are two vector
spaces of polynomials over disjoint sets of variables, and of dimension at most s. Suppose

wt1 : y→Nk

wt2 : z→Nk

are BIWAs for V1 and V2 isolating bases B1 and B2 respectively. If w : y ∪ z → N is a weight
assignment that separates B1 · B2 = {m1m2 : m1 ∈ B1 , m2 ∈ B2}. Then the weight assignment
defined by

wt : y∪ z→Nk+1

wt : yi 7→ (wt1(yi), w(yi)) for all yi ∈ y,

wt : zi 7→ (wt2(zi), w(zi)) for all zi ∈ z,

is a BIWA for V = V1 ·V2 = span { f · g : f ∈ V1 , g ∈ V2}.

Proof. Observe that by the definition of wt, wt(m1 · m2) = (wt1(m1) + wt2(m2), w(m1 · m2))

for any m ∈ Mons(y) and m′ ∈ Mons(z).
If V1 and V2 are expressed as matrices (with the generators listed as rows), then the matrix

corresponding to V is just V1 ⊗ V2, the tensor product. Let B1 = {m1, . . . , mr} and B2 =

{m′1, . . . , m′s}. We shall prove that the weight assignment wt is a BIWA that isolates the natural
spanning set B = B1 · B2 =

{
mim′j : i ∈ [r] , j ∈ [s]

}
. Firstly, note that all the elements of B

54

have distinct weights due to the presence of the last coordinate from wt, which separates the
rs monomials in B1 · B2.

Now suppose m̃ = m ·m′ /∈ B for m ∈ Mons(y) and m′ ∈ Mons(z) and say without loss
of generality m /∈ B1. The column indexed by m̃ in V1 · V2 is just the tensor product of the
columns indexed by m in V1 and the column indexed by m′ in V2. But since wt1 is basis
isolating for V1, the column of V1 indexed by m can be expressed as a linear combination of
lower weight terms.

V1,m = ∑
wt1(mi)≺wt1(m)

ai ·V1,mi

=⇒ Vm̃ = V1,m ⊗V2,m′ = ∑
wt1(mi)≺wt1(m)

ai · (V1,mi ⊗V2,m′)

= ∑
wt1(mi)≺wt1(m)

ai ·Vmim′

But notice that wt1(mi) ≺ wt1(m) also implies that wt(mim′) ≺ wt(mm′). Therefore, (re-
peating this argument on m′ if m′ /∈ B2) we can write any column with index outside B as a
linear combination of columns of smaller weight in B. Hence, wt is indeed a BIWA for V that
isolates B.

3.9.2 Constant width UPT circuits

In this subsection we prove the existence of a poly(n, d) hitting set for UPT circuits of constant
preimage-width computing n-variate degree-d polynomials, when the shape of the circuit is
known. The proof is an easy extension of the ideas of [GKS17] to the UPT-SML circuits
regime. We will construct a univariate substitution map that preserves its nonzeroness and
has degree poly(n, d), which will imply a hitting set naturally.

Say y = y1 t · · · t yd and let f (y) be an nd-variate degree d polynomial computable by
a UPT-SML circuit (with respect to the above partition) of constant preimage-width. From
Observation 3.21, we may assume that the circuit has depth log d. We will need the following
lemma for bivariate polynomials over large fields.

Lemma 3.51. ([GKS17, Lemma 3.2]) Let f (y1, y2) = ∑w
i=1 ui(y1)vi(y2) be a nonzero bivariate

polynomial of degree d over F. If char(F) = 0 or char(F) > d, then f (tw, tw−1 + tw) 6= 0.

Suppose f (y) is computable by a circuit C that has shape T. Define the set of variables
t = {tτ : τ ∈ T}. We will begin by substituting tj

τi for every yij where the leaf in C computing
polynomials over yi corresponds to τi in T. As long as we can, we will pick a multiplication
gate τ that has its left and right children (say τL and τR) computing univariate polynomials
in tτL and tτR respectively; and then substitute tτL ← tw

τ and tτR ← tw
τ + tw−1

τ . Let us call this
substitution Φτ.

Lemma 3.52. Consider the above iterative process of substituting some of the yi’s by suitable polyno-
mials in t. Let Φ̃(f) = f̃ (t, y) 6= 0 be the polynomial just before applying the substitution Φτ. Then

55

f̃ ′ = Φτ(f̃) := f̃ (tτL ← tw
τ , tτR ← tw

τ + tw−1
τ) 6= 0.

Proof. From (3.17), we have

f = ∑
u∼τ

[u] · [root : u]

= ∑
u∼τ

[uL] · [uR] · [root : u],

=⇒ Φ̃(f) = ∑
u∼τ

au(tτL) · bu(tτR) · hu(y, t \ tτL , tτR) 6= 0.

We may treat Φ̃(f) as a bivariate polynomial in tτL , tτR over the field F(t \ {tτL , tτR}) and apply
Lemma 3.51 to conclude that Φτ(Φ̃(f)) will be nonzero if and only if Φ̃(f) was nonzero.

Now for every leaf node in T, create a sequence which we will call its signature, by walking
down from the root to the leaf. Every time we pick the left child, we append L to the
signature and every time we pick the right child, we append R. For τ ∈ T, call the sequence
sigτ = (a1 a2 · · · ar). Let t be a fresh variable and τi be the node corresponding to yi. Define

ΦL : t 7→ tw , ΦR : t 7→ tw + tw−1

Ψ : y→ F[t]

Ψ : yij 7→ Φa1 ◦Φa1 ◦ · · · ◦Φar(t
j)

where (a1 · · · ar) = sigτi
. Observe that the procedure described above essentially executes the

substitution Ψ on y. We can then infer from Lemma 3.52 that for any f (y) computable by
UPT-SML circuits, f (y) 6= 0 ⇐⇒ f (Ψ(y)) 6= 0. This gives us the following theorem.

Theorem 3.53. Let f (y) be a polynomial computed by an UPT-SML circuit of width w and depth r.
Consider the following substitution Ψ : y→ F[t] given by

Ψ : yij 7→ Φa1 ◦Φa2 ◦ · · · ◦Φar(t
j),

where the signature of the part yi is a1a2 · · · ar. Then f (y) is non-zero if and only if f (Ψ(y)) is
non-zero.

Now since the depth of the circuit is at most O(log d), if the width is constant, then the
final degree of f (Ψ(y)) is at most O(nwO(log d)), which is poly(n, d) if w = O(1). This finishes
the proof of Theorem 3.3.

3.10 Hitting sets for FewPT circuits

We will need the following fact about coefficient operators (defined in Definition 3.35).

Observation 3.54 (Coefficients of UPT circuits are also UPT circuits). Suppose f (y) is a ho-
mogeneous degree d polynomial that is computable by a UPT set-multilinear circuit with respect to

56

y = y1 t · · · t yd of preimage-width w. If S ⊆ [d] and m is any monomial in yS, then the polynomial
coeffm(f) can also be computed by a UPT set-multilinear circuit of preimage-width w.

Sketch of Proof. Since the UPT-SML circuit C can be made canonical without loss of gener-
ality, we only need to set the corresponding leaves in yS as 0 or 1 depending on whether the
variable appears in m.

The following is an analogue of [GKST17, Lemma 4.5].

Lemma 3.36. Let y = y1 t . . . t yd be a partition and f (y) be a set-multilinear polynomial (with
respect to the above partition) computed by a UPT-SML circuit of preimage-width w and underlying
parse-tree shape T. Suppose g(y) is another set-multilinear polynomial (under the same partition) that
cannot be computed by a UPT-SML circuit of preimage-width w with the same shape T.

Then, there exists S ⊆ [d] and R ∈ F[yS]
1×w′ , and P, Q ∈ F[y−S]

w′×1 with w′ ≤ w2 such that:

• For each i ∈ [w′], there is a monomial mi ∈ yS such that the i-th element of P and Q is
coeffmi(f) and coeffmi(g) respectively,

• there is a vector Γ ∈ F1×w′ of support size at most w + 1 such that ΓP = 0 and ΓQ 6= 0,

• the coefficient space of R is full-rank. That is, if we interpret R as a matrix over F by listing each
of its w′ entries as a column vector of coefficients, then this matrix has full column-rank.

• the vector of polynomials R is simultaneously computable by a UPT-SML circuit of preimage-
width at most w′.

Proof. For an S ⊆ [d], let yS = {m1, . . . , mr} and y−S = {n1, . . . , nt} in some order. Define
M f ,S ∈ Fr×t such that M f ,S(i, j) is the coefficient of nj in coeffmi(f). Note that the ith row of
M f ,S is the polynomial coeffmi(f) written in the coefficient vector form.

For a type τ in a tree T, Sτ will denote the set of leaves of the node τ in T. Consequently,
we will also use just M f ,τ to mean M f ,Sτ

. We will denote by B f ,τ a set of monomials from ySτ

such that the rows indexed by them in M f ,S will form a basis of the rows of M f ,S. Note that
if τ has children τ1, τ2, then we can ensure that our choice of B f ,τ satisfies B f ,τ ⊆ B f ,τ1 × B f ,τ2

as the latter is clearly a spanning set. Using such a basis B f ,τ, we can then write down a set
of dependencies as below corresponding to f and τ.

∀m ∈ ySτ : coeffm(f) = ∑
m′∈B f ,τ

γm,m′ coeffm′(f). (3.55)

Using this, we can rewrite f in the following way for any τ ∈ T.

f = ∑
mk∈ySτ

mk

 ∑
m′i∈B f ,τ

γi,k coeffm′i
(f)

 = ∑
m′i∈B f ,τ

 ∑
mk∈ySτ

γi,kmk

 coeffm′i
(f)

f = ∑
m′i∈B f ,τ

ui(ySτ) coeffm′i
(f) for some ui ∈ F[ySτ

]. (3.56)

57

Suppose τ ∈ T has two children τ1 and τ2 that share the same dependencies for g as well.
That is,

f = ∑
m′i∈B f ,τ1

ui(ySτ1) coeffm′i
(f),

g = ∑
m′i∈B f ,τ1

ui(ySτ1) coeffm′i
(g),

f = ∑
n′j∈B f ,τ2

vj(ySτ2) coeffn′j
(f),

g = ∑
n′j∈B f ,τ2

vj(ySτ2) coeffn′j
(g).

Combining them (and renaming the variables by dropping the ′s), we get

f = ∑
(mi ,nj)∈B f ,τ1

×B f ,τ2

ui(ySτ1)vj(ySτ2) · coeffmi ·nj(f),

g = ∑
(mi ,nj)∈B f ,τ1

×B f ,τ2

ui(ySτ1)vj(ySτ2) · coeffmi ·nj(g).

Observe that if for all m ∈ B f ,τ1 × B f ,τ2 we have

coeffm(f) = ∑
m′∈B f ,τ

γm,m′ coeffm′(f) , coeffm(g) = ∑
m′∈B f ,τ

γm,m′ coeffm′(g),

then this also forces that by (3.56), for τ:

f = ∑
mi∈B f ,τ

u′i(y
Sτ) coeffmi(f) , g = ∑

mi∈B f ,τ

u′i(y
Sτ) coeffmi(g).

Since g is not computable by a UPT-SML circuit with underlying shape T this cannot happen
for all τ ∈ T. Let us pick the lowest τ (closest to the leaves; and say its children are τ1, τ2)
such that for some m ∈ B f ,τ1 × B f ,τ2 we have

coeffm(f) = ∑
m′∈B f ,τ

γm,m′ coeffm′(f),

coeffm(g) 6= ∑
m′∈B f ,τ

γm,m′ coeffm′(g).
(3.57)

The choice of the vector of polynomials is now clear. If w′ =
∣∣B f ,τ1

∣∣ · ∣∣B f ,τ2

∣∣ ≤ w2, then

R :=
(

ui(ySτ1)vj(ySτ2) : (mi, nj) ∈ B f ,τ1 × B f ,τ2

)
∈ F[ySτ

]1×w′

P :=
(

coeffmi ·nj(f) : (mi, nj) ∈ B f ,τ1 × B f ,τ2

)T
∈ F[y−Sτ

]w
′×1

Q :=
(

coeffmi ·nj(g) : (mi, nj) ∈ B f ,τ1 × B f ,τ2

)T
∈ F[y−Sτ

]w
′×1.

It is clear from the definition that the vectors P and Q are made up of coefficients of f and
g. Also, (3.57) provides a suitable vector Γ of support at most w + 1 such that ΓP = 0 but
ΓQ 6= 0.

58

It follows that the coefficient space of R is full-rank as the sets of polynomials
{

ui : i ∈ B f ,τ1

}
and

{
vj : j ∈ B f ,τ2

}
are linearly independent and are on disjoint sets of variables.

We only need to show that every entry of R can also be computed by a UPT-SML circuit
of preimage-width at most w2. To see this, observe that the set

{
coeffm(f) : m ∈ y−Sτ1

}
is spanned by the set

{
ui(ySτ1) : i ∈ B f ,τ1

}
, and similarly the set

{
coeffn(f) : n ∈ y−Sτ2

}
is

spanned by
{

vj(ySτ2) : j ∈ B f ,τ2

}
. Since the dimension of these spaces is at most w, it follows

that each ui(ySτ1) can be written as a linear combination of at most w many coeffm(f)’s, and
similarly each vj(ySτ2). Observation 3.54 shows that each of the coefficient polynomials can
also be computed by UPT-SML circuits of preimage-width at most w. Thus, by computing
each of the ui’s and vj’s separately, and then taking all w2 products, we have a UPT-SML
circuit of preimage-width at most w2 that simultaneously computes all the entries of R.

3.11 Finer analysis of constant width UPT circuits

We now present some results comparing the power of constant width UPT circuits to variants
of non-commutative ABPs and formulas. We recall the following statements that we shall use
in the rest of this section.

• Nisan [Nis91] showed that for any homogeneous non-commutative polynomial f the
width of a (homogeneous) ABP computing it, in the layer i, is exactly equal to the rank
of the partial derivative matrix of f for degree i.

• Lagarde et al. [LMP19] show that in the smallest UPT circuit of shape T computing a
polynomial f , the number of gates of a type τ ∈ T is equal to the rank of the generalised
partial derivative matrix (formally defined in the proof of Theorem 3.5) for the type τ.

Thus, the ranks of the appropriate generalised partial derivative matrices for f characterize
the ABP complexity and the UPT complexity of f . We will drop the term ‘generalised’ for the
remainder of this discussion.

3.11.1 Constant width ABPs

Note that an ABP of width w can directly be converted to a UPT circuit of preimage-width
O(w2). Also, for an m = 2 the polynomial family {Pd(y1, . . . , ym)} from Section 3.7 yields the
following lemma using in Lemma 3.23 and Theorem 3.24.

Lemma 3.58. There is a family of non-commutative bivariate degree n polynomials {Qn}8 such that
for all large enough n, there is a UPT circuit for Qn with size O(log n) and preimage-width O(1), and
for any shuffling of Qn, an ABP computing it has width nΩ(1).

Putting these observations together we get that constant width ABPs are strictly weaker
than constant width UPT circuits, even under shufflings.

8The polynomial Qn is Pd for d = blog nc.

59

3.11.2 General non-commutative ABPs and formulas

Constant width UPT circuits are weaker. For a large enough constant c, consider the fol-
lowing family of a non-commutative variant of the elementary symmetric polynomial family.

NESymn(x1, . . . , xn) = ∑
1≤i1<···<ic≤n

xi1 xi2 · · · xic

Lemma 3.59. For all large enough n, the polynomial NESymn is computable by a formula of size
O(nc). Also, any shuffling of NESymn requires UPT circuits of width nΩ(1).

Proof Sketch. Note that for any bipartition of the positions, the corresponding partial derivative
matrix of NESymn(x) is a set disjointness matrix. Therefore it has full row rank, which is at
least nΩ(1) for any bipartition with the smaller part having size between c/3 and 2c/3. Once
we have this, it is clear that any shuffling of NESymn continues to have this property. Thus,
we have that no shuffling of NESymn has a UPT circuit of constant preimage-width.

Also, NESymn has exactly (n
c) monomials and therefore has poly(n) sized formulas.

ABPs are weaker (without shufflings). Next, let us consider family of the bivariate palin-
drome polynomials of degree 2n.

Paln(x1, x2) = ∑
(i1,...,in)∈[2]n

(xi1 xi2 · · · xin) · (xin · · · xi2 xi1)

The following lemma is now easy to verify using the discussions in rest of this chapter about
the palindrome family.

Lemma 3.60. For all large enough n, Pn(x1, x2) has a UPT circuit of size poly(n) and constant
preimage-width. Also, any ABP computing Pn(x1, x2) requires size 2Ω(d) = nω(1).

Formulas simulate shufflings of constant width UPT circuits. The following easy lemma
tells us that any polynomial that has a constant width UPT circuit has a shuffling that is
efficiently computable by a formula.

Lemma 3.61. If fn is an n-variate degree d polynomial that has a UPT circuit of size s and preimage-
width w, then there is a shuffling ∆σ(f) of fn that has formulas of size poly(s, wO(log d)).

Proof Sketch. We know from Theorem 3.4 that there is a shuffling of f , say f ′, that has a UPT
circuit of preimage-width O(w2) and depth O(log d). Let the shape of the new circuit be T.
Now for any type τ ∈ T and any gate g ∼ τ, the number of paths from g to the root is at
most wdepth = wO(log d). Thus a careful replication of gates in the depth-reduced UPT circuit
will give us a formula of the required size.

60

4 | Isolating Log-variate Polynomials

In this chapter we give a construction of an explicit isolating family of weight assignments
for depth-3 powering circuits of size s that depend on O(log s) variables. We achieve this by
studying the Newton polytopes of polynomials that have low dimension of partial deriva-
tives. Our construction extends to all log-variate polynomials with low dimension of partial
derivatives, and also gives an efficient explicit hitting set for such polynomials, reproving a
recent result of Forbes, Ghosh and Saxena [FGS18].

4.1 Introduction

The model of depth-3 powering circuits is perhaps the most well-understood complete model
in the context of lower bounds, after depth-2 circuits. We know of tight exponential lower
bounds against this model for polynomials as simple as the monomial x1x2 · · · xn. However,
when it comes to explicit hitting sets, the best known result is an nO(log log n) time construction
due to Forbes, Saptharishi and Shpilka [FSS14]. Therefore constructing polynomial-sized
explicit hitting sets for this model remains a highly interesting open question.

Expressing polynomials as sums of powers of linear forms has been studied in connection
to the notion of Waring rank, which is a classical problem in algebraic geometry with works
dating as far back as the late 19th century (see [IK99] for details). However, the model of
depth-3 powering circuits was first considered in the algebraic complexity literature in the
work of Saxena [Sax08]. He analysed the question of PIT for various structured constant depth
models and gave efficient whitebox PITs for those models. He also proved an exponential lower
bound against depth-3 powering circuits in the same work. In the context of lower bounds,
this model is quite well understood, and we now know of tight exponential lower bounds
against depth-3 powering circuits computing a monomial [RS11].

In the context of hitting sets, independent quasipolynomial sized (sO(log s)) constructions
were shown by Forbes and Shpilka [FS12], and Agrawal, Saha and Saxena [ASS13]. Later,
Forbes, Saptharishi and Shpilka [FSS14] improved this to a hitting set of size sO(log log s) by
using a technique of Shpilka and Volkovich [SV15] in combination with a result of Forbes
and Shpilka [FS13] on hitting sets for ROABPs. A different construction achieving the same
parameters is also known due to Gurjar, Korwar and Saxena [GKS17]. Forbes, Ghosh and
Saxena [FGS18] give an efficient (poly(s, d)) hitting set for this model, when the number of
variables depends logarithmically on the size (n = O(log s)). Obtaining efficient hitting sets

61

for depth-3 powering circuits in the general setting remains an open question.

4.1.1 Isolating Weight Assignments

The main tool in designing explicit hitting sets is the notion of hitting set generators (HSGs)
which are polynomial maps that preserve nonzeroness (see Definition 2.10). One way to
design an HSG is to come up with an efficient weight assignment on the underlying set of vari-
ables, and to then construct a polynomial map that essentially carries out this assignment (see
Definition 2.18). This idea of using weight assignment for identity testing was introduced by
Mulmuley, Vazirani and Vazirani [MVV87], in the context of obtaining fast parallel algorithms
for perfect matching. They proposed the concept of an isolating weight assignment via a lemma
that is known as the isolation lemma.

Lemma 4.1 (Isolation Lemma [MVV87] (Informal)). Suppose A is an arbitrary subset of 2[n]. Then
for some m = poly(n), a random weight assignment w : [n] → [m] is such that the element a ∈ A
that minimizes w(a) := ∑i∈a w(i), is unique, with probability at least 2/3.

Note that the bound on m is independent of the size of the set A. Suppose A is the set of
monomials of some n-variate multilinear polynomial, and suppose that w : [n] → [m] is an
assignment that has a unique minimum weight monomial. Note that such as assignment nat-
urally gives us an HSG using Definition 2.18 and Lemma 2.19. Thus, coming up with isolating
weight assignments or isolating families is an effective technique for designing hitting sets1.
Some notable examples of hitting sets based on isolating weight assignments are the hitting
sets for depth-2 circuits [KS01, AB03], and the hitting sets for ROABPs [AGKS15, GG20].

4.1.2 Results in this chapter

The main contribution of this work is an explicit isolating family for the class of log-variate
polynomials with small dimension of partials.

Theorem 4.2 (Main Theorem). Let F be a field of characteristic zero. Let d, k ∈ N be large enough,
and for some n = O(log k), let C(k, d) be the class of n-variate, degree d polynomials over F, such that
∂∗(f) ≤ k (see Definition 4.8), for all f ∈ C. Then there exists an explicit family W(k, d) consisting
of poly(k, log d) weight assignments, which isolates C(k, d).

This theorem yields an explicit hitting set for the same class using Lemma 2.19, reproving
a result of Forbes, Ghosh and Saxena [FGS18].

Corollary 4.3 (Hitting Set for Low Partials). Let F be a field of characteristic zero. For all large
enough k, d ∈ N and all n = O(log k), the class C(k, d) of n-variate, degree d polynomials over F

with dimension of partials at most k, has a hitting set of size poly(k, d).

1Although Lemma 4.1 has been stated for a family of subsets of [n], it easily extends to multisets, thereby being
applicable for non-multilinear PIT.

62

4.1.3 Proof Idea

Our main result is the construction of an explicit weight assignment family that isolates (see
Definition 2.16) log-variate polynomials that have a low dimension of partial derivatives.

We observe that for any polynomial f , a weight assignment wt is a linear function on the
exponent vectors of the monomials in f , and hence it can be seen as a linear function on the
Newton polytope of f (see Definition 4.5). Thus, if we can design a linear function `(e) that is
uniquely minimised at a vertex a of the Newton polytope of f , then we will be done. One way
to achieve this is to design a weight assignment that gives distinct weights to all the vertices
of the polytope. Therefore, if we bound the number of vertices of the Newton polytope for
any polynomial computable by a depth-3 powering circuit, by say r, then we can come up
with a set of poly(r) assignments using known techniques [KS01, AB03].

In order to prove such a bound, we then observe that for any polynomial f and any vertex
a of the Newton polytope of f , the dimension of partial derivatives of f is lower bounded by
the conesize of a, which extends an observation of Forbes [For14, Corollary 8.4.13] (see Defini-
tion 4.4). We then apply the known bounds on the dimension of partial derivatives for depth-3
powering [For14, Lemma 8.4.8] and the number of monomials of low-cone size [FGS18], to
derive Theorem 4.2.

4.1.4 Related work

Newton polytopes. In algebraic complexity, polynomials have been studied previously by
analysing the structure of their Newton polytopes, although not in the context of PIT. Koiran,
Portier, Tavenas and Thomassé [KPTT15] studied the Newton polytopes of bivariate polyno-
mials. Among other things, they formulated a τ-conjecture for Newton polygons which they
showed implies that the Permanent requires exponential sized algebraic circuits. The recent
work of Hrubeš and Yehudayoff [HY20] studies shadows of Newton polytopes and shows that
it is connected to the monotone formula, and in some cases the monotone circuit complexity,
of multivariate polynomials. The works of Fenner, Gurjar and Thierauf [FGT16], and Gurjar,
Thierauf and Vishnoi [GTV18] are some notable examples of constructing isolating families
for polytopes arising from combinatorial problems. In [FGT16], a quasi-explicit isolating fam-
ily is constructed for the bipartite matching polytope. In [GTV18], the techniques used in
[FGT16] are generalised to polytopes with totally unimodular faces.

Comparison with [FGS18]. The main result of this work reproves a result of Forbes, Ghosh
and Saxena [FGS18], as mentioned earlier, and also largely resembles their approach. Both
the works crucially use an upper bound in the number of monomials of “low conesize” (refer
Lemma 4.13). However, [FGS18] show that the coefficients of monomials of low conesize can
be efficiently computed, and directly obtain a blackbox PIT. On the other hand, we obtain
hitting sets from this upper bound, by constructing an isolating weight assignment for the
underlying class, by analysing the structure of the Newton polytopes of polynomials in it.

63

4.2 Background

We now fix some notation and state some known results that we will be using in this chapter.
We use the shorthand ∑[s] ∧[d] ∑[n] to denote n-variate depth-3 powering circuits with

degree ≤ d and top fan-in ≤ s. We drop the superscripts whenever they are clear from the
context or are not irrelevant.

Definition 4.4 (F-cone of a monomial). Let F be some field and m be a monomial over variables
x = {x1, . . . , xn}. We define the F-conesize of the monomial m as follows.

F -cone(m) = {∂em : e ∈Nn, ∂em 6= 0}

Here ∂em denotes the derivative of m with respect to xe over F. ♦

Newton Polytopes

We build our family of isolating weight assignments by analysing the Newton polytopes of
polynomials that are computed by depth-3 powering circuits. We will therefore need the
following definition of the Newton polytope of a polynomial, and also the definition of a vertex
of a polytope.

Definition 4.5 (Newton Polytope). For a polynomial f (x), the Newton Polytope of f , denoted by
P (f) is defined as P (f) := conv-hull

({
e ∈Nn : coeff f (xe) 6= 0

})
⊆ Rn. ♦

Definition 4.6 (Vertex of a Polytope). Let P ⊆ Rn be a convex polytope. A point v ∈ P is said to
be a vertex of P , if it can not be expressed as a non-trivial convex combination of other points in P .
In other words, there is no choice of points a1, a2, . . . ∈ P and λ1, λ2, . . . ∈ (0, 1) with ∑i λi = 1, that
satisfies ∑i λiai = v. ♦

We will also need the following results about the behaviour of linear functions on con-
vex polytopes, which can be found in any text on linear or combinatorial optimization (e.g.
[PS82]).

Lemma 4.7 (Vertices and Minima of Linear Functions). For any convex polytope P ⊆ Rn, the
following hold.

• For any w ∈ Rn and a point e ∈ P , there exists a vertex v of P such that wᵀv ≤ wᵀe.

• If v is a vertex of P and if cᵀv < cᵀv′ for all vertices v′ 6= v of P , then the linear function
`c : y 7→ cᵀy is uniquely minimised on P at v.

• If v is a vertex of P , then there exists a vector c ∈ Rn such that the linear function `c : y 7→ cᵀy
is uniquely minimised on P at v.

Dimension of Partial Derivatives

A key measure that we use to analyse polynomials computed by depth-3 powering circuits is
the dimension of partial derivatives of polynomials, which is defined as follows.

64

Definition 4.8 (Dimension of Partial Derivatives [NW97]). For a polynomial f (x) ∈ F[x] the
dimension of the partial derivatives of f , denoted by ∂∗(f), is defined as follows.

∂∗(f) = dim

(
spanF

{
∂|e| f
∂xe : e ∈Nn

})

♦

We will use the following lemma about the dimension of partial derivatives of depth-3
powering circuits, which first appeared in Forbes’s thesis [For14], to apply Theorem 4.2 to the
case of depth-3 powering circuits.

Lemma 4.9 (Dimension of Partial Derivatives of Σ
∧

Σ [Folklore]). Suppose f (x) is a degree d
polynomial that is computable by a Σ

∧
Σ circuit of size s. Then ∂∗(f) ≤ s(d + 1).

4.3 Isolating Family for Structured Log-variate Polynomials

The key ingredient of our result is the following structural lemma relating the dimension of
partial derivatives of a polynomial, to the vertices in its Newton polytope.

Lemma 4.10 (Partial Derivatives of Vertices). Let f (x) ∈ F[x] be an n-variate polynomial of degree
d and let P (f) be it’s Newton Polytope. Then for any vertex a of P (f) we have that dim(∂∗(f)) ≥
dim(∂∗(xa)) = |F -cone(a)|.

Proof. Let w ∈ Rn be such that the linear function `w : y 7→ wᵀy is uniquely minimised at a.
Such a vector w exists because a is a vertex of P (f), by Lemma 4.7.

Claim 4.11. If b ∈ Nn is such that ∂b(xa) 6= 0, then the function `w is uniquely minimised at
(a− b) on the polytope P ′ = P (∂b(f)).

Proof. Let f ′ = ∂b(f) and note that supp(f ′) =
{

x(e−b) : xe ∈ supp(f), ∂b(xe) 6= 0
}

. Now
suppose that the function `w is minimised at some e′ ∈ P ′. We can assume that e′ is a vertex
of P ′ due to Lemma 4.7, which means xe′ ∈ supp(f ′). Therefore, there exists a monomial
xe ∈ supp(f) such that e = e′+b. But then `w(e) = `w(e′+b) ≤ `w(a−b) + `w(b) = `w(a),
which contradicts the definition of w.

Now, let M(f) be a matrix with rows and columns indexed by monomials in x of degree
at most d, such that the mth row of M(f) reads out the coefficient vector of ∂m(f). Note that
rank(M(f)) = dim(∂∗(f)), and therefore it is enough show that rank(M(f)) ≥ |F -cone(xa)|.
For that purpose, consider the submatrix Ma(f) of M(f) which contains the rows of M(f)
that are indexed by monomials that divide xa.

We shall order the columns of Ma(f) non-decreasingly with respect to wᵀy; we break ties
arbitrarily. Note that the leading entries of all the rows in Ma(f) are indexed precisely by the
sub-monomials of xa, as their exponent vectors uniquely minimise `w in the Newton poly-
topes of the respective partial derivatives of f (Claim 4.11). Therefore all the nonzero rows of

65

Ma(f), indexed by monomials from F -cone(xa), are linearly independent. This finishes the
proof.

Thus, an upper bound on the dimension of partials of a polynomial translates to an upper
bound on the conesize of the vertices of its polytope, as stated below.

Corollary 4.12. For a polynomial f (x) with ∂∗(f) ≤ k and any vertex a of P (f), we have that
F -cone(a) ≤ k.

This further lets us bound the number of vertices of P (f) for an n-variate degree-d polyno-
mial f (x) whose dimension of partials is at most k, using the following lemma from [FGS18]2.

Lemma 4.13 (Counting Monomials with Small Cone Size [FGS18]). For a field F of characteristic
zero, let n, d, k ∈ N be large enough. The number of n-variate, degree d monomials that have F-
conesize ≤ k is at most (n

log k) · k2.

We can now prove Theorem 4.2, which we first restate.

Theorem 4.2 (Main Theorem). Let F be a field of characteristic zero. Let d, k ∈ N be large enough,
and for some n = O(log k), let C(k, d) be the class of n-variate, degree d polynomials over F, such that
∂∗(f) ≤ k (see Definition 4.8), for all f ∈ C. Then there exists an explicit family W(k, d) consisting
of poly(k, log d) weight assignments, which isolates C(k, d).

Proof. Fix an arbitrary polynomial f ∈ C(k, d) and let P = P (f) be its Newton polytope.
First, Lemma 4.10 tells us that all the vertices of P have F-conesize at most k. We can then
use Lemma 4.13 to conclude that P has at most

(
(n

log k) · k2
)

vertices, which is poly(k) for any
n = O(log k). Hence, from Lemma 4.7 and Lemma 2.21, it follows that for some A = poly(k),
the family of assignments W(n, d, A) defined in Definition 2.20 isolates f . Moreover, since the
same bound on number of vertices of P (f) holds for all g ∈ C(k, d), we get that W(n, d, A)

isolates C.

The following corollaries, which first appeared in the work of Forbes, Ghosh and Sax-
ena [FGS18], then follow immediately using Lemma 2.19 and Lemma 4.9.

Corollary 4.3 (Hitting Set for Low Partials). Let F be a field of characteristic zero. For all large
enough k, d ∈ N and all n = O(log k), the class C(k, d) of n-variate, degree d polynomials over F

with dimension of partials at most k, has a hitting set of size poly(k, d).

Corollary 4.14 (Hitting Sets for Log-variate Σ
∧

Σ). Let F be a field of characteristic zero. For
all large enough s, d ∈ N and all n = O(log k), the class Σ[s] ∧[d] Σ of n-variate depth-3 powering
circuits over F, has a hitting set of size poly(s, d).

2Forbes, Ghosh and Saxena cite a private communication with Saptharishi for this lemma.

66

4.4 Discussion

Apart from proving a slightly stronger version of the hitting set result in [FGS18], we believe
that our technique of studying Newton polytopes for the task of PIT is of independent in-
terest. More specifically, our technique can possibly be combined with previous works on
isolating assignments for polytopes ([FGT16, GTV18]) to give better parameters for general
depth-3 powering circuits.

Moreover, to the best of our knowledge, this work is the first to analyse the Newton
polytopes of polynomials for constructing explicit hitting sets. This approach could find
applications in blackbox PITs for other structured models.

67

5 | Near-optimal Bootstrapping of Hit-
ting Sets for Algebraic Models

This chapter discusses some findings centred around the question “what would happen if we
had marginally non-trivial hitting sets for constant variate circuits or formulas?”. This question was
first considered by Agrawal, Ghosh and Saxena [AGS19]. Our results are essentially obtained
by optimizing their methods using some crucial observations, the details of which we now
present1.

5.1 Bootstrapping of Hitting Sets

A result of Agrawal, Ghosh and Saxena [AGS19] shows, among other things, the following
surprising result: blackbox PIT algorithms for size s, degree s and n-variate circuits with
running time as bad as

(
sn0.5−δ

)
, where δ > 0 is a constant, can be used to construct blackbox

PIT algorithms for size s circuits with running time sexp(exp(O(log∗ s))). Note that log∗ n refers to
the smallest i such that the i-th iterated logarithm log◦i(n) is at most 1. This shows that certain
mild derandomisation of PIT would be sufficient to get a nearly complete derandomisation.
Their proof uses a novel bootstrapping technique where they use the connections between
hardness and derandomisation repeatedly so that by starting with a weak hitting set we can
obtain better and better hitting sets.

One of the open questions of Agrawal, Ghosh and Saxena [AGS19] was whether the hy-
pothesis can be strengthened to a barely non-trivial derandomisation. That is, suppose we
have a blackbox PIT algorithm, for the class of size s, degree s and n-variate circuits, that runs
in time so(n), can we use this to get a nearly complete derandomisation? Note that we have
a trivial (s + 1)n · poly(s) algorithm from the polynomial identity lemma [Ore22, DL78, Zip79,
Sch80]. Our main result is an affirmative answer to this question in a very strong sense.
Furthermore, our result holds for typical subclasses that are reasonably well-behaved under
composition. Formally, we prove the following theorem.

Theorem 5.1 (Bootstrapping PIT for algebraic formulas, branching programs and circuits).
Let ε > 0 and n ≥ 2 be constants. Suppose that, for all large enough s, there is an explicit hitting
set of size sn−ε for all degree s, size s algebraic formulas (algebraic branching programs or circuits

1The results in this chapter have appeared in [KST19].

69

respectively) over n variables. Then, there is an explicit hitting set of size sexp(exp(O(log∗ s))) for the
class of degree s, size s algebraic formulas (algebraic branching programs or circuits respectively) over
s variables.

Note that (s + 1)n−ε = sn−ε ·
(
1 + 1

s

)n−ε
< e · sn−ε < sn−ε′ for some other constant ε′ > 0

since s is large enough. Hence, for this theorem, there is no qualitative difference if the
hitting set had size (s + 1)n−ε instead of sn−ε. We also note that as far as we understand,
such a statement for classes such as algebraic branching programs or formulas, even with the
stronger hypothesis of there being a sO(n(1/2)−ε), did not follow from the results of [AGS19].
We elaborate more on this, and the differences between our proof and theirs in the next
subsection.

An interesting, albeit simple corollary of the above result is the following statement.

Corollary 5.2 (From slightly non-trivial PIT to lower bounds). Let ε > 0 and n ≥ 2 be constants.
Suppose that, for all large enough s, there is an explicit hitting set of size (sn−ε) for all degree s, size
s algebraic formulas (algebraic branching programs or circuits respectively) over n variables. Then,
for every function d : N → N, there is a polynomial family { fn}, where fn is n variate and degree
d(n), and for every large enough n, fn cannot be computed by algebraic formulas (algebraic branching
programs or circuits respectively) of size smaller than (n+d

d)
1/exp(exp(O(log∗ nd)))

. Moreover, there is an
algorithm which when given as input an n variate monomial of degree d, outputs its coefficient in fn

in deterministic time (n+d
d).

Thus, a slightly non-trivial blackbox PIT algorithm leads to hard families with near op-
timal hardness. A recent work of Carmosino, Impagliazzo, Lovett and Mihajlin [CILM18]
that has a similar theme shows that given an explicit polynomial family of constant degree
which requires super linear sized non-commutative circuits, one can obtain explicit polyno-
mial families of exponential hardness. Besides the obvious differences in the statements, one
important point to note is that the notions of explicitness in the conclusions of the two state-
ments are different from each other. In [CILM18], the final exponentially hard polynomial
family is in VNP provided the initial polynomial family is also in VNP. On the other hand,
for our result, we can say that the hard polynomial family obtained in the conclusion is ex-
plicit in the sense that its coefficients are computable in deterministic time (n+d

d). Another
difference between Corollary 5.2 and the main result of [CILM18] is in the hypothesis. From
a non-trivial hitting set, we can obtain a large class of lower bounds by varying parameters
appropriately (see Theorem 5.3), however the main result of [CILM18] starts with a lower
bound for a single family. In that regard, our hypothesis appears to be much stronger and
slightly non-standard. We discuss this issue in some detail at the end of the next section.

In another relevant result, Jansen and Santhanam [JS12] showed that marginal improve-
ments to known hitting set constructions imply lower bounds for the permanent polynomial.
In particular, they show that a “sufficiently succinct” hitting set of size d, for univariates of
degree d that have constant-free algebraic circuits of small size, would imply that the perma-
nent polynomial requires super-polynomial sized constant-free algebraic circuits. Note that

70

even though their hypothesis needs a much weaker improvement in the size of the hitting
set when compared to ours, the hitting set is additionally required to be “succinct”2, which
makes it difficult to compare the two hypotheses.

5.1.1 Proof overview

The basic intuition for the proofs in this chapter, and also for the proofs of the results in
[AGS19], comes from the results of Kabanets and Impagliazzo [KI04], and those of Heintz
and Schnorr [HS80] and Agrawal [Agr05]. We start by informally stating these results.

Theorem 5.3 (Informal, Heintz and Schnorr [HS80], Agrawal [Agr05]). Let H(n, d, s) be an
explicit hitting set for circuits of size s, degree d in n variables. Then, for every k ≤ n and d′ such
that d′k ≤ d and (d′ + 1)k > |H(n, d, s)|, there is a nonzero polynomial on n variables and individual
degree d′ that vanishes on the hitting set H(n, d, s), and hence cannot be computed by a circuit of size
s.

In a nutshell, given an explicit hitting set, we can obtain hard polynomials. In fact, playing
around with the parameters d′ and k ≤ n, we can get a hard polynomial on k variables, degree
kd′ for all k, d′ satisfying d′k < d and (d′ + 1)k > |H(n, d, s)|.

We now state a result of Kabanets and Impagliazzo [KI04] that shows that hardness can
lead to derandomisation.

Theorem 5.4 (Informal, Kabanets and Impagliazzo [KI04]). A super-polynomial lower bound for
algebraic circuits for an explicit family of polynomials implies a deterministic blackbox PIT algorithm
for all algebraic circuits in n variables and degree d of size poly(n) that runs in time poly(d)nε

for
every ε > 0.

Now, we move on to the main ideas in our proof. Suppose we have non-trivial hitting sets
for size s, degree d ≤ s circuits on n variables. The goal is to obtain a blackbox PIT for circuits
of size s, degree s on s variables with a much better dependence on the number of variables.

Observe that if the number of variables was much much smaller than s, say at most a
constant, then the hitting set in the hypothesis has a polynomial dependence on s, and we
are done. We will proceed by presenting variable reductions to eventually reach this stage.
With this in mind, the hitting sets for s variate circuits in the conclusion of Theorem 5.1 are
designed iteratively starting from hitting sets for circuits with very few variables. In each
iteration, we start with a hitting set for size s, degree d ≤ s circuits on n variables with some
dependence on n and obtain a hitting set for size s, degree d ≤ s circuits on m = 2nδ

variables
(for some δ > 0), that has a much better dependence on m. Then, we repeat this process till
the number of variables increases up to s, which takes O(log∗ s) iterations. We now briefly
outline the steps in each such iteration.

2They require their hitting sets to be encoded by uniform TC0 circuits of appropriately small size. See [JS12]
for details.

71

• Obtaining a family of hard polynomials : The first step is to obtain a family of explicit
hard polynomials from the given hitting sets. This step is done via Theorem 5.3, which
simply uses interpolation to find a nonzero polynomial Q on k variables and degree d
that vanishes on the hitting set for size s′, degree d′ circuits on n variables, for some
s′, d′ to be chosen appropriately.

• Variable reduction using Q : Next, we take a combinatorial design (see Definition 5.7)
{S1, S2, . . . , Sm}, where each Si is a subset of size k of a universe of size ` = poly(k),
and

∣∣Si ∩ Sj
∣∣ � k. Consider the map Γ : F[x1, x2, . . . , xm] → F[y1, y2, . . . , y`] given by

the substitution Γ(C(x1, x2, . . . , xm)) = C (Q(y |S1), Q(y |S2), . . . , Q(y |Sm)). As Kabanets
and Impagliazzo show in the proof of Theorem 5.4, Γ preserves the nonzeroness of all
algebraic circuits of size s on m variables, provided Q is hard enough.
We remark that our final argument for this part is slightly simpler than that of Kabanets
and Impagliazzo, and hence our results also hold for algebraic branching programs
and formulas. In particular, we do not need Kaltofen’s seminal result that algebraic
circuits are closed under polynomial factorization, whereas the proof in [KI04] crucially
uses Kaltofen’s result [Kal89]. This come from the simple, yet crucial, observation that
if Q vanishes on some hitting set, then so does any multiple of Q. This allows us to
use the hardness of low-degree multiples of Q, and so, we do not need any complexity
guarantees on factors of polynomials.

• Blackbox PIT for m-variate circuits of size s and degree s : We now take the hitting set
given by the hypothesis for the circuit Γ(C) (invoked with appropriate size and degree
parameters) and evaluate Γ(C) on this set. From the discussion so far, we know that
if C is nonzero, then Γ(C) cannot be identically zero, and hence it must evaluate to
a nonzero value at some point on this set. The number of variables in Γ(C) is at most
` = poly log m, whereas its size turns out to be not too much larger than s. Hence, the size
of the hitting set for C obtained via this argument turns out to have a better dependence
on the number of variables m than the hitting set in the hypothesis.

To prove Corollary 5.2, we let t(n) = exp(exp(O(log∗ n))). Now, we invoke the the con-

clusion of Theorem 5.1 with s = (n+d
d)

1/10t(n)
. Thus, we get an explicit hitting set H of size

(n+d
d)

1/10
for n variate circuits of size s and degree d. We now use Theorem 5.3 to get a nonzero

polynomial of degree d and n which vanishes on the set H and hence cannot be computed by
circuits of size at most s.

Why does bootstrapping work? As far as we understand, the primary reason that makes
such bootstrapping results feasible is the following observation from the results of Heintz-
Schnorr and Agrawal [HS80, Agr05]. Given a single hitting set, we can obtain a family of lower
bounds by varying the degree and the number of variables in the interpolating polynomial.
In particular, one can obtain a k-variate polynomial that has hardness 22k

by appropriately
choosing the parameter k and the individual degree of the interpolating polynomial. This

72

is not true, for instance, in the boolean world. It turns out that in the result of Kabanets
and Implagliazzo [KI04] that converts a hard polynomial P into a hitting set, the proof of
this conversion has different sensitivities to the degree of P and the number of variables it
depends on. This allows one to start with a moderately non-trivial hitting set, obtaining a
hard polynomial from it of the right degree and number of variables, and use that to obtain a
hitting set which is significantly better than what we started with. This, in our opinion, is a
high level picture of why bootstrapping works in the algebraic world.

Similarities and differences with the proof of Agrawal, Ghosh and Saxena [AGS19]. The
high level outline of our proof is essentially the same as that in [AGS19]. However, there
are some differences that make our final arguments shorter, simpler and more robust than
those from [AGS19] thus leading to a stronger and near optimal bootstrapping statement
in Theorem 5.1. Moreover, as we already alluded to, our proof extends to formulas and
algebraic branching programs as well, whereas, to the best of our understanding, those in
[AGS19] do not. We now elaborate on the differences.

One of the main differences between the proofs in this work and those from [AGS19]
is in the use of the the result of Kabanets and Impagliazzo [KI04]. Agrawal, Ghosh and
Saxena [AGS19] use this result as a blackbox to get deterministic PIT using hard polynomials.
The result in [KI04] crucially relies on a result of Kaltofen, which shows that low degree
algebraic circuits are closed under polynomial factorization. That is, if a degree d, n variate
polynomial P has a circuit of size at most s, then any factor of P has a circuit of size at most
(snd)e for a constant e. Such a closure result is not known to be true for algebraic formulas,
and hence the results in [AGS19] do not seem to extend to these settings. Additionally, the
analysis of bootstrapping in [AGS19] seems to depend crucially on the fact that the circuit
size grows additively with substitution (size(f ◦ g) ≤ size(f) + ∑i size(gi)). This is not true
for algebraic branching programs and hence it is not clear if their analysis holds for ABPs
despite the recent result [ST20] about closure of ABPs under factoring. Also, the removal of
any dependence on the “factorization exponent” e is crucial in our proof as it allows us to
start with a hypothesis of a barely non-trivial hitting set. The other main difference between
our proof and that in [AGS19] is rather technical but we try to briefly describe it. This is in
the choice of combinatorial designs. The designs used in our work are based on the standard
Reed-Solomon code and they yield larger set families than the designs used in [AGS19]3.

Also, their proof is quite involved and we are unsure if there are other constraints in
their proof that force such choices of parameters. Our proof, though along almost exactly the
same lines, appears to be more transparent and more malleable with respect to the choice of
parameters.

The strength of the hypothesis. The hypothesis of Theorem 5.1 and also those of the results
in [AGS19] is that we have a non-trivial explicit hitting set for algebraic circuits of size s,

3However, even without these improved design parameters, our proof can be used to provide the same con-
clusion when starting off with a hitting set of size sn1−δ

, instead of the hypothesis of Theorem 5.1.

73

degree d on n variables where d and s could be arbitrarily large as functions of n. This seems
like an extremely strong assumption, and also slightly non-standard in the following sense. In
a typical setting in algebraic complexity, we are interested in PIT for size s, degree d circuits
on n variables where d and s are polynomially bounded in the number of variables n. A
natural open problem here, which would be a more satisfying statement to have, would be
to show that one can weaken the hypothesis in Theorem 5.1 to only hold for circuits whose
degree and size are both polynomially bounded in n. It is not clear to us if such a result can
be obtained using the current proof techniques, or is even true.

Having noted that our hypothesis is very strong, and perhaps even slightly unnatural with
respect to the usual choice of parameters in the algebraic setting, we remark that our hypoth-
esis does in fact follow from the assumptions that the Permanent is hard for Boolean circuits,
and the Generalized Riemann Hypothesis (GRH). The proof is essentially the same as that of
Corollary 1 in the work of Jansen and Santhanam [JS12]. The only difference is that while
Jansen and Santhanam show that there are non-trivial explicit 4 hitting sets for univariate
polynomials with small circuits assuming the hardness of Permanent for Boolean circuits and
the GRH, here we have to work with circuits computing multivariate polynomials. At a high
level, the proof in [JS12] proceeds by constructing a pseudorandom generator for Boolean
circuits of appropriate size assuming the hardness of permanent for Boolean circuits. Then,
the set of binary strings in the output of this generator is interpreted in a natural way as an
integer. This gives us a small set of integer points, which can be constructed deterministically.
Then they argue that there is no constant free algebraic circuit of small size which vanishes
on all these integer points. The proof of this step is via contradiction, where they assume the
existence of such a constant free algebraic circuit to construct a Boolean circuit of small size
which is not fooled by the aforementioned Boolean pseudorandom generator. For algebraic
circuits which are not constant free and are allowed to use arbitrary field constants and hence
cannot be efficiently simulated by a Boolean circuit, they assume the GRH to reduce to the
case of constant free circuits in a fairly standard way. For our setting, we interpret the output
of the Boolean pseudorandom generator as not just a single integer point, but a k tuple of
integers points. These set of points in Zk form our candidate hitting set. The rest of the proof
carries over without any changes. We refer the interested reader to [JS12] for further details.

Remark. Throughout the chapter, we shall assume that there are suitable b·c’s or d·e’s if necessary so
that certain parameters chosen are integers. We avoid writing this purely for the sake of readability.

All results in this work continue to hold for the underlying model of algebraic formulas, algebraic
branching programs or algebraic circuits. In fact, the results also extend to the model of border of
algebraic formulas, algebraic branching programs or algebraic circuits. That is, if there is a slightly
non-trivial hitting set for polynomials in the border of these classes, then our main theorem gives a
highly non-trivial explicit hitting set for these polynomials. Since our proofs extend as it is to this
setting with essentially no changes, we skip the details for this part, and confine our discussions in the
rest of the chapter to just standard algebraic formulas. ♦

4In fact their notion of explicitness is stronger than ours.

74

5.2 Preliminaries

We now define some standard notions we work with, and state some of the known results
that we use in this chapter.

We will use the following folklore algorithm for computing univariate polynomials, often
attributed to Horner5. We also include a proof for completeness.

Proposition 5.5 (Horner rule). Let P(x) = ∑d
i=0 pixi be a univariate polynomial of degree d over

any field F. Then, P can be computed by an algebraic formula of size 2d + 1.

Proof. Follows from the fact that P(x) = (· · · ((pdx + pd−1)x + pd−2) · · ·)x + p0, which is a
formula of size 2d + 1.

The following observation shows that the classes of algebraic formulas/ABPs/circuits are
robust under some very natural operations. These are precisely the properties of the under-
lying models that we rely on in this work. Any circuit model that satisfies these properties
would be sufficient for our purposes but we shall focus on just the standard models of for-
mulas, ABPs and circuits.

Observation 5.6. The class of polynomials computed by formulas/ABPs/circuits satisfy the following
properties:

• Any polynomial of degree d with at most s monomials can be computed by a formula/ABP/circuit
of size s · d. In the specific setting when the polynomial is a univariate, it can be computed by a
formula/ABP/circuit of size O(d).

• Partial substitution of variables does not increase the size of the formula/ABP/circuit.

• If each of Q1, . . . , Qk is computable by size s formulas/ABPs/circuits, then ∑ Qi is computable
by size sk formula/ABP/circuit respectively.

• Suppose P(x1, . . . , xn) is computable by a size s1 formula/ABP/circuit and say Q1, . . . , Qn are
polynomials each of which can be computed by formulas/ABPs/circuits of size s2. Then the
composition P(Q1, . . . , Qn) can be computed by a formula/ABP/circuit of size at most s1 · s2

respectively.

5.2.1 Combinatorial designs

Definition 5.7 (Combinatorial designs [NW94]). A family of sets {S1, . . . , Sm} is said to be an
(`, k, r) design if

• Si ⊆ [`],

• |Si| = k,

•
∣∣Si ∩ Sj

∣∣ < r for any i 6= j. ♦
5Though this method was discovered at least 800 years earlier by Iranian mathematician and astronomer Sharaf

al-Dı̄n T. ūsı̄ (cf. Hogendijk [Hog89]).

75

The following is a standard construction of such designs based on the Reed-Solomon code.

Lemma 5.8 (Construction of designs). Let c ≥ 2 be any positive integer. There is an algorithm that,
given parameters `, k, r satisfying ` = kc and r ≤ k with k being a power of 2, outputs an (`, k, r)
design {S1, . . . , Sm} for m ≤ k(c−1)r in time poly(m).

Proof. Since k is a power of 2, we can identify [k] with the field Fk of k-elements and [`] with
Fk ×Fkc−1 . For each univariate polynomial p(x) ∈ Fkc−1 [x] of degree less than r, define the set
Sp as

Sp = {(i, p(i)) : i ∈ Fk} .

Since there are k(c−1)r such polynomials we get k(c−1)r subsets of Fk × Fkc−1 of size k each.
Furthermore, since any two distinct univariate polynomials cannot agree at r or more places,
it follows that

∣∣Sp ∩ Sq
∣∣ < r for p 6= q.

5.2.2 Hardness-randomness connections

Observation 5.9. Let H be a hitting set for the class C(n, d, s) of n-variate polynomials of degree at
most d that are computable by formulas of size s. Then, for any nonzero polynomial Q(x1, . . . , xn)

such that deg(Q) ≤ d and Q(a) = 0 for all a ∈ H, we have that Q cannot be computed by formulas
of size s.

Proof. If Q was indeed computable by formulas of size at most s, then Q is a member of
C(n, d, s) for which H is a hitting set. This would violate the assumption that H was a hitting
set for this class as Q is a nonzero polynomial in the class that vanishes on all of H.

From this observation, it is easy to see that explicit hitting sets can be used to construct
lower bounds.

Lemma 5.10 (Hitting sets to hardness [HS80, Agr05]). Let H be an explicit hitting set for C(n, d, s).
Then, for any k ≤ n such that k|H|1/k ≤ d, there is a polynomial Q(z1, . . . , zk) of individual degree
smaller than |H|1/k that is computable in time poly(|H|) that requires formulas of size s to compute
it. Furthermore, given the set H, there is an algorithm to output a formula of size |H| · d for Q in time
poly(|H|).

Proof. This is achieved by finding a nonzero k-variate polynomial, for k ≤ n, of individual
degree d′ < |H|1/k, that vanishes on the hitting set H; this can be done by interpreting it as
a homogeneous linear system with (d′ + 1)k “variables” and at most |H| “constraints”. Such
a Qk can then be found via interpolation by solving a system of linear equations in time
poly(|H|). The degree of Qk is at most k · |H|1/k ≤ d from the hypothesis and the hardness of
Qk follows from Observation 5.9.

76

Remark 5.11. (Bit complexity of Qk) Note that we can obtain6 a hard polynomial Qk such that its
coefficients have bit complexities that are at most polynomially large in terms of the bit complexities of
the points in the given hitting set. ♦

It is also known that we can get non-trivial hitting sets from suitable hardness assump-
tions. For a fixed (`, k, r) design {S1, . . . , Sm} and a polynomial Q(z1, . . . , zk) ∈ F[x] we shall
use the notation QJ`, k, rKNW to denote the vector of polynomials

QJ`, k, rKNW := (Q(y |S1), Q(y |S2), . . . , Q(y |Sm)) ∈ (F[y1, . . . , y`])
m .

Kabanets and Impagliazzo [KI04] showed that, if Q(z[k]) is hard enough, then the com-
posed polynomial P(QJ`, k, rKNW) is nonzero if and only if P(x[m]) is nonzero. However, their
proof crucially relies on a result of Kaltofen [Kal89] (or even a non-algorithmic version due
to Bürgisser [Bür00]) about the complexity of factors of polynomials. Hence, this connection
is not directly applicable while working with other subclasses of circuits such as algebraic
formulas or algebraic branching programs as we do not know if they are closed under factor-
ization. The following lemma can be used in such settings and this work makes heavy use of
this.

Lemma 5.12 (Hardness to randomness without factor complexity). Let Q(z1, . . . , zk) be an arbi-
trary polynomial of individual degree smaller than d. Suppose there is an (`, k, r) design {S1, . . . , Sm}
and a nonzero polynomial P(x1, . . . , xm), of degree at most D, that is computable by a formula of size
at most s such that P(QJ`, k, rKNW) ≡ 0. Then there is a polynomial P̃(z1, . . . , zk), whose degree is at
most k · d ·D that is divisible by Q and computable by formulas of size at most s · (r− 1) · dr · (D + 1).

Moreover, if r = 2, then this upper bound can be improved to 4 · s · d · (D + 1)

If the polynomial Q(z1, . . . , zk) in the above lemma was chosen such that Q vanished
on some hitting set H for the class of size s′, n-variate, degree d′ polynomials where s′ ≥
s · (r − 1) · dr · (D + 1), then so does P̃ since Q divides it. If it happens that deg(P̃) ≤ d′,
then Observation 5.9 immediately yields that P̃ cannot be computed by formulas of size s′,
contradicting the conclusion of the above lemma. Hence, in such instances, we would have
that P(QJ`, k, rKNW) 6≡ 0, without appealing to any factorization closure results.

Proof of Lemma 5.12. Borrowing the ideas from Kabanets and Impagliazzo [KI04], we look at
the m-variate substitution (x1, . . . , xm) 7→ QJ`, k, rKNW as a sequence of m univariate substitu-
tions. We now introduce some notation to facilitate this analysis.

Given the (`, k, r) design {S1, . . . , Sm}, let yi = y |Si , for each i ∈ [m]. The tuple QJ`, k, rKNW

can therefore be written as (Q(y1), Q(y2), . . . , Q(ym)) ∈ (F[y1, . . . , y`])
m. For each 0 ≤ i ≤ m,

let Pi = P(Q(y1), Q(y2), . . . , Q(yi), xi+1, . . . , xm), which is P after substituting for the variables
x1, . . . , xi. Since P0 = P is a nonzero polynomial and Pm = P(QJ`, k, rKNW) ≡ 0, let t be the
unique integer with 1 ≤ t ≤ m, for which Pt−1 6≡ 0 and Pt ≡ 0.

6via a cleverer variant of Gaussian elimination, e.g. Bareiss algorithm [Bar68].

77

Since Pt(y, xt, . . . , xm) is a nonzero polynomial, there exist values that can be substituted to
the variables besides xt and yt such that it remains nonzero; let this polynomial be P′t (yt, xt).
Also, for each j ∈ [t− 1], let Q(t)(yj ∩yt) be the polynomial obtained from Q(yj) after this sub-
stitution, which is a polynomial of individual degree less than d on at most (r− 1) variables.
We can now make the following observations about P′(yt, xt):

• Each Q(t)(yj ∩ yt) has a formula of size at most (d(r− 1)) · dr−1, and thus P′(yt, xt) has
a formula of size at most (s · (r− 1) · dr),

• deg(P′) ≤ D · deg(Q) ≤ D · (kd), and degxt
(P′) ≤ D,

• P′(yt, Q(yt)) ≡ 0.

The last observation implies that the polynomial (xt − Q(yt)) divides P′. Therefore we
can write P′ = (xt − Q(yt)) · R, for some polynomial R. Consider P′ and R as univariates in
xt with coefficients as polynomials in yt:

P′ =
D

∑
i=0

P′i · xi
t , R =

D−1

∑
i=0

Ri · xi
t.

If a is the smallest index such that P′a 6= 0, then P′a = Ra · Q(yt) and hence Q(yt) divides P′a.
Any coefficient P′i can be obtained from P′ using interpolation from (D + 1) evaluations of xt.
Hence, P̃ = P′a can be computed in size (s · (r− 1) · dr · (D + 1)).

For the case of r = 2, observe that the polynomial Q(t)(yj ∩ yt) is a univariate of degree
at most d. Thus, by Proposition 5.5, Q(t)(yj ∩ yt) can be computed by a formula of size
2d + 1 ≤ 4d. So, we get an upper bound of (4 · s · d) on the formula complexity of P′(yt, xt)

(instead of O(sd2) that we would get by invoking the general bound for r = 2) and after
interpolation as above, we get a bound of 4 · s · d · (D + 1) on the formula complexity of P′a as
defined above.

5.3 Bootstrapping Hitting Sets

The following are the main bootstrapping lemmas to yield our main result. These lemmas
follow the same template as in the proof from [AGS19] but with some simple but crucial new
ideas that avoid any requirement on bounds on factor complexity, and also permitting a result
starting from a barely non-trivial hitting set.

Lemma 5.13 (Barely non-trivial to moderately non-trivial hitting sets). Let ε > 0 and n ≥ 2 be
constants. Suppose that for all large enough s there is an explicit hitting set of size sn−ε, for all degree
s, size s algebraic formulas over n variables.

Then for a large enough m and for all s ≥ m, there is an explicit hitting set of size sm/50 for all
degree s, size s algebraic formulas over m variables.

78

Lemma 5.14 (Bootstrapping moderately non-trivial hitting sets). Let n0 be large enough, and n
be any power of two that is larger than n0. Suppose for all s ≥ n there are explicit hitting sets of size
sg(n) for C(n, s, s), the class of n-variate degree s polynomials computed by size s formulas.

1. Suppose g(n) ≤ n
50 , then for m = n10 and all s ≥ m, there are explicit hitting sets of size sh(m)

for C(m, s, s) where h(m) ≤
(1

10

)
·m1/4.

2. Suppose g(n) ≤
(1

10

)
· n1/4, then for m = 2n1/4

and all s ≥ m, there are explicit hitting sets of

size sh(m) for C(m, s, s) where h(m) = 20 ·
(

g(log4 m)
)2

.

Furthermore, h(m) also satisfies h(m) ≤
(1

10

)
·m1/4.

We will defer the proofs of these lemmas to the end of this section and complete the proof of
Theorem 5.1.

Theorem 5.1 (Bootstrapping PIT for algebraic formulas, branching programs and circuits).
Let ε > 0 and n ≥ 2 be constants. Suppose that, for all large enough s, there is an explicit hitting
set of size sn−ε for all degree s, size s algebraic formulas (algebraic branching programs or circuits
respectively) over n variables. Then, there is an explicit hitting set of size sexp(exp(O(log∗ s))) for the
class of degree s, size s algebraic formulas (algebraic branching programs or circuits respectively) over
s variables.

Proof. Observe that the statements of Lemma 5.13 and Lemma 5.14 are worded to ensure that
the conclusion of Lemma 5.13 is precisely the hypothesis of Lemma 5.14(1), the conclusion
of Lemma 5.14(1) is precisely the hypothesis of Lemma 5.14(2), and Lemma 5.14(2) admits
repeated applications as its conclusion also matches the requirements in the hypothesis. Thus,
we can use one application of Lemma 5.13 followed by one application of Lemma 5.14(1) and
repeated applications of Lemma 5.14(2) to get hitting sets for polynomials depending on
larger and larger sets of variables, until we can get a hitting set for the class C(s, s, s).

Let n0 be large enough so as to satisfy the hypothesis of Lemma 5.13, and the two parts of
Lemma 5.14. We start with an explicit hitting set of size sn0−ε for C(n0, s, s) and one application
of Lemma 5.13 gives an explicit hitting set of size sn1/50 for C(n1, s, s) for n1 ≥ n8

0 and all s ≥ n1.
Using Lemma 5.14(1) we obtain an explicit hitting set of size s(1/10)·m1/4

0 for the class C(m0, s, s)
for all s ≥ m0 = n10

1 . We are now in a position to apply Lemma 5.14(2) repeatedly. We now
set up some basic notation to facilitate this analysis.

Suppose after i applications of Lemma 5.14(2) we have an explicit hitting set for the class
C(mi, s, s) of size sti . We wish to track the evolution of mi and ti. Recall that mi = 2m1/4

i−1 after
one application of Lemma 5.14(2).

Let {bi}i be such that b0 = log m0 and, for every i > 0, let bi = 2(bi−1/4) so that bi = log mi.
Similarly to keep track of the complexity of the hitting set, if sti is the size of the hitting set
for C(mi, s, s), then by Lemma 5.14(2) we have t0 =

(1
10

)
m1/4

0 and ti = 20 · t2
i−1 for all i > 0.

The following facts are easy to verify.

• mi ≥ s or bi ≥ log s for i = O(log∗ s),

79

• for all j, we have tj = 20(2
j−1) · t2j

0 = exp(exp(O(j))).

• the exponent of s in the size of the final hitting set is tO(log∗ s) = exp(exp(O(log∗ s))).

Therefore we have an explicit hitting set of size sexp(exp(O(log∗ s))) for C(s, s, s). An explicit
algorithm describing the hitting set generator is presented in Section 5.4.

5.3.1 Proofs of the bootstrapping lemmas

Here we prove the two main lemmas used in the proof of Theorem 5.1. We restate the lemmas
here for convenience. The proofs follow a very similar template but with different settings of
parameters and minor adjustments.

Lemma 5.13 (Barely non-trivial to moderately non-trivial hitting sets). Let ε > 0 and n ≥ 2 be
constants. Suppose that for all large enough s there is an explicit hitting set of size sn−ε, for all degree
s, size s algebraic formulas over n variables.

Then for a large enough m and for all s ≥ m, there is an explicit hitting set of size sm/50 for all
degree s, size s algebraic formulas over m variables.

Proof. Let a = max(n, 250/ε). We begin by fixing the design parameters, k = n, ` = a · k4 =

a · n4 and r = 2.

Constructing a suitably hard polynomial: For B = 5k/ε, we construct Qk(z1, . . . , zk) that van-
ishes on the hitting set for all size sB degree sB formulas over k variables, that has size
sB(k−ε) using Lemma 5.10. The polynomial Qk(z) has the following properties.

• Qk has individual degree d < sB(k−ε)/k, and total degree < k · sB(k−ε)/k.

• Qk is not computable by formulas of size sB.

• Qk has a formula of size ≤ (kd) · sB(k−ε).

Building the NW design: Using Lemma 5.8, we now construct an (`, k, r) design {S1, . . . , Sm}
with m :=

(
`
k

)r
=
(

ak(4−1)
)2

= a2k6.

Variable reduction: Let P(x1, . . . , xm) be a nonzero m-variate polynomial of degree s that is
computable by a formula of size s, and let P(QkJ`, k, rKNW) ≡ 0. Then, from the ‘more-
over’ part of Lemma 5.12 (since r = 2), we get that there is a polynomial P̃(z1, . . . , zk)

that vanishes on a hitting set for formulas of size sB and degree sB, and is computable
by a formula of size at most

size(P̃) ≤ 4 · s · d · (s + 1)

≤ 4s(s + 1) · sB(k−ε)/k

≤ s
(

5+ B(k−ε)
k

)
= s5+ 5k

ε −5 = sB.

80

Moreover, note that the degree of P̃(z1, . . . , zk) is at most (k · d) · s ≤ s
(

2+ B(k−ε)
k

)
< sB.

Since P̃ vanishes on the hitting set for formulas of size sB and degree sB, we get a
contradiction due to Observation 5.9. Therefore it must be the case that P(QkJ`, k, rKNW)

is nonzero.

Construction of the hitting set: Therefore, starting with a nonzero formula of degree s, size
s, over m variables, we obtain a nonzero `-variate polynomial of degree at most s · (kd) ≤
sB. At this point we can just use the trivial hitting set given by the polynomial identity
lemma [Ore22, DL78, Zip79, Sch80], which has size at most sB`.

Therefore what remains to show is that our choice of parameters ensures that B` < m
50 .

This is true, as m
50 = a2k6

50 = ak
50 · ak5 =

(
5k
ε

)
· ` · k > B`.

The construction runs in time that is polynomial in the size of the hitting set in the conclusion,
and the bit-size of the points in it. See Section 5.4 for a more elaborate discussion.

Lemma 5.14 (Bootstrapping moderately non-trivial hitting sets). Let n0 be large enough, and n
be any power of two that is larger than n0. Suppose for all s ≥ n there are explicit hitting sets of size
sg(n) for C(n, s, s), the class of n-variate degree s polynomials computed by size s formulas.

1. Suppose g(n) ≤ n
50 , then for m = n10 and all s ≥ m, there are explicit hitting sets of size sh(m)

for C(m, s, s) where h(m) ≤
(1

10

)
·m1/4.

2. Suppose g(n) ≤
(1

10

)
· n1/4, then for m = 2n1/4

and all s ≥ m, there are explicit hitting sets of

size sh(m) for C(m, s, s) where h(m) = 20 ·
(

g(log4 m)
)2

.

Furthermore, h(m) also satisfies h(m) ≤
(1

10

)
·m1/4.

Proof. The proofs of both parts follow the same template as in the proof of Lemma 5.13 but
with different parameter settings. Hence, we will defer the choices of the parameters `, k, r
towards the end to avoid further repeating the proof. For now, let `, k, r be parameters that
satisfy r ≤ k, ` = k2 and 5r · g(n) ≤ k.

Constructing a hard polynomial: The first step is to construct a polynomial Qk(z1, . . . , zk)

that vanishes on the hitting set for the class C(n, s5, s5), where7 k ≤ n. This can be
done by using Lemma 5.10. The polynomial Qk(z) will therefore have the following
properties.

• Qk has individual degree d smaller than s5g(n)/k, and degree at most k · s5g(n)/k.

• Computing Qk requires formulas of size more than s5.

• Qk has a formula of size at most s10g(n).

Building the NW design: Using the parameters `, k, r, and the construction from Lemma 5.8,
we now construct an (`, k, r) design {S1, . . . , Sm} with m ≤ kr.

7that is, Qk is a k-variate polynomial that is just masquerading as an n-variate polynomial that does not depend
on the last n− k variables.

81

Variable reduction using Qk: Let P(x1, . . . , xm) ∈ C(m, s, s) be a nonzero polynomial. Sup-
pose P(QkJ`, k, rKNW) ≡ 0, then Lemma 5.12 states that there is a nonzero polynomial
P̃(z1, . . . , zk) of degree at most s · k · d such that Qk divides P̃, and that P̃ can be computed
by a formula of size at most

s · (r− 1) · dr · (s + 1) ≤ s4 · dr

≤ s4 · s5r·g(n)/k

≤ s5. (since k, r satisfy 5r · g(n) ≤ k)

Furthermore, the degree of P̃ is at most s · r · s5g(n)/k ≤ s5. Hence, P̃ is a polynomial
on k ≤ n variables, of degree at most s5 that vanishes on the hitting set of C(n, s5, s5)

since Qk divides P̃. But then, Observation 5.9 states that P̃ must require formulas of
size more than s5, contradicting the above size bound. Hence, it must be the case that
P(QkJ`, k, rKNW) 6≡ 0.

Hitting set for C(m, s, s): At this point, we set the parameters k and r depending on how
quickly g(n) grows.

Part (1)
(

g(n) ≤ n
50

)
: In this case, we choose k = n and r = 10 (so we satisfy 5r · g(n) ≤

n = k). From Lemma 5.8, we have an explicit (`, k, r) design {S1, . . . , Sm} with
m = kr = n10.

For any nonzero P ∈ C(m, s, s), we have that P(QkJ`, k, rKNW) is a nonzero `-variate
polynomial of degree at most s · k · s5g(n)/k ≤ s3. Hence, by just using the trivial
hitting set via the polynomial identity lemma [Ore22, DL78, Sch80, Zip79], we have
an explicit hitting set of size s3` ≤ s3m1/5

. Since m ≥ n0 and n0 is large enough, we
have that

h(m) := 3m1/5 ≤
(

1
10

)
·m1/4.

Part (2)
(

g(n) ≤
(1

10

)
n1/4
)
: In this case, we choose k =

√
n and r = n1/4, so that 5r ·

g(n) ≤ 10r · g(n) ≤ k and ` = n. Using Lemma 5.8, we now construct an explicit
(`, k, r) design {S1, . . . , Sm} with m = 2n1/4 ≤ kr.

We have a formula computing the n-variate polynomial P(QkJ`, k, rKNW) of size at
most s · s10g(n) ≤ s20g(n) =: s′. Using the hypothesis for hitting sets for C(n, s′, s′),
we have an explicit hitting set for C(m, s, s) of size at most

(
s′
)g(n)

= s20g(n)2
= sh(m),

82

where h(m) = 20
(

g((log m)4)
)2. Since n0 is large enough, we have that

10 · h(m) ≤ 20 · 10 ·
(

g((log m)4)
)2

≤ 2 (log m)2 (since g(n) ≤
(

1
10

)
n1/4)

≤ m1/4. (since m ≥ n0 and n0 is large enough)

This completes the proof of both parts of the lemma.

5.4 Algorithm for generating the hitting set

We now give an algorithm to generate an explicit hitting set for C(s, s, s), for all large s, using
the hypothesis of Theorem 5.1. Let n0 be the initial threshold from the hypothesis and let n1

be a constant that satisfies the “large enough” requirements of Lemma 5.14.

n0 ≥ 2 t0 = (n0 − ε)

n1 is large enough t1 = n1/50

n2 = n10
1 t2 = (1/10) n1/4

2

For all i ≥ 3, ni = 2n1/4
i−1 ti := 20t2

i−1

We are provided an algorithm Initial-Hitting-Set(s) that outputs a hitting set for C(n0, s, s)
of size at most sn0−ε. Algorithm 1 describes a function Hitting-Set which, given inputs i and
s, outputs a hitting set for C(ni, s, s) of size at most sti in time poly(sti).

From the growth of ni, it follows that nb ≥ s for b = O(log∗ s) and ti = 202i−1t2i

0 . Un-
folding the recursion for Hitting-Set(j, s), for any j, the algorithm makes at most 2j calls to
Initial-Hitting-Set(s′) for various sizes s′ satisfying

s′ ≤ sB·20j−1 ∏
j−1
i=1 ti ≤ sBt2

j−1 = sO(tj).

Thus for Hitting-Set(b, s), the algorithm makes at most 2b calls to Initial-Hitting-Set(s′),
for sizes s′ that are at most sexp(exp(O(log∗ s))). The overall running time is polynomial time in
the size of the final hitting set which is stb = sexp(exp(O(log∗ s))).

Bit complexity of the hitting sets. We will now discuss the bit complexity of the hitting
sets that are generated during the bootstrapping procedure. We will analyse Algorithm 1 and
show that any hitting set H for n-variate formulas that the algorithm outputs, will have a bit
complexity that is at most |H| f (n), for f (n) = exp(O(log∗ n)).

Let us first consider the case when i ≥ 3. Suppose each evaluation point in H0 = Hi−1(s5)

is at most ha bits long, where h = |H0| and a = f (ni−1). Using Remark 5.11, we get that
each coefficient of Q is at most hca bits long, for some other constant c. The output of Al-
gorithm 1 for this case will be evaluations of Q on H1 = Hi−1(s20ti−1). Since |H1| = h4ti−1 ,

83

Algorithm 1: Hitting-Set

Input : Parameter i and a size s.
Output: A hitting set of size sti size for C(ni, s, s).

1 if i = 1 then
2 Let A = max (n0, 250/ε), B = 3n0/ε

3 Let H0(sB) := Initial-Hitting-Set(sB) // size at most sB(n0−ε)

4 Compute a nonzero polynomial Q on k = n0 variables of individual degree
smaller than sBt0/k that vanishes on H0(sB). // takes poly(sBt0) time

5 Compute an (A · n4
0, n0, 2)-design {S1, . . . , Sn1} .

6 Let S ⊆ F be of size at least sB.

7 return
{
(QJ`, k, rKNW) (a) : a ∈ SAn5

0

}
// size at most sBAn5

0 ≤ sn1/50 = st1

8 else if i = 2 then
9 H1(s5) := Hitting-Set(1, s5) // size at most s5t1

10 Compute a nonzero polynomial Q on k = n1 variables of individual degree
smaller than s5t1/k that vanishes on H1(s5). // takes poly(s5t1) time

11 Compute an (n2
1, n1, 10)-design {S1, . . . , Sn2} .

12 Let S ⊆ F be of size at least s3.

13 return
{
(QJ`, k, rKNW) (a) : a ∈ Sn2

1

}
// size at most s3n2

1 ≤ s0.1·n1/4
2 = st2

14 else if i ≥ 3 then
15 Hi−1(s5) := Hitting-Set(i− 1, s5) // size at most s5ti−1

16 Compute a nonzero polynomial Q on k =
√

ni−1 variables of individual degree
smaller than s5ti−1/k that vanishes on Hi−1(s5). // takes poly(s5ti−1) time

17 Compute an (ni−1,
√

ni−1, 4
√

ni−1)-design {S1, . . . , Sni}

18 Hi−1(s20ti−1) := Hitting-Set(i− 1, s20ti−1) // size at most s20t2
i−1

19 return
{
(QJ`, k, rKNW) (a) : a ∈ Hi−1(s20ti−1)

}
// size at most s20t2

i−1 = sti

84

the bit complexity of H1 is at most h4ati−1 . Now Q is a degree < s5 polynomial with
O(h) monomials. As a result any evaluation of Q on a point from H1 will have at most
O(log h) ·

(
hca + s5 · h4ati−1

)
≤ h2a·(4ti−1) = |H1|2a, as ti−1 is large enough. Since ni = 2n1/4

i−1 , we
have that f (n) = exp(O(log∗ n)). For the cases when i = 1 or i = 2, since we use the trivial
hitting sets in place of H1 in the above discussion, the above bounds will continue to hold.

We want to remark that although the bit complexity of the output of Hitting-Set(i, s) is
not polynomial in the size sti , the exponent ti is always larger than f (ni). As a result the time
taken to generate the final hitting set in the conclusion of Theorem 5.1 can still be bounded
by sexp(exp(O(log∗ s))), albeit for a slightly larger constant.

Note that the successive outputs of the procedure are obtained by repeatedly composing
hard polynomials on a hitting set. As a result, with each composition the size of the hitting
set stays the same whereas the same cannot be said about the bit complexity. It is therefore
unlikely that the bit complexity will depend solely on the size of the hitting set.

85

6 | On the Existence of Algebraically
Natural Proofs

This chapter deals with the question “do strong circuit lower bounds admit easy proofs?”, a ques-
tion that has received much attention in the recent years, due to the lack of strong circuit
lower bounds despite significant progress in more structured settings1.

6.1 Introduction

In the context of proving algebraic circuit lower bounds, perhaps the only thing more frustrat-
ing than the inability to prove such lower bounds is the inability to come up with plausible
approaches towards them. This lack of progress on the problem and a dearth of potential
approaches towards it has spurred some work towards understanding the viability of some
of the current lower bound approaches; the idea being that a good sense of what approaches
will not work would aid in the search of approaches that might work.

In the broader context of lower bounds in computational complexity, there are various
results of this flavour which establish that various families of techniques cannot be used for
proving very strong lower bounds, e.g., the barrier of Relativisation due to Baker, Gill and
Solovay [BGS75], that of Algebraization due to Aaronson and Wigderson [AW09] and that of
Natural Proofs due to Razborov and Rudich [RR97] 2. While none of these barrier results are
directly applicable to the setting of algebraic computation, there have been recent attempts
towards generalizing these ideas to the algebraic set up. A key notion in this line of work
is the notion of algebraically natural proofs alluded to and defined in the works of Aaronson
and Drucker [AD08], Forbes, Shpilka and Volk [FSV18], and Grochow, Kumar, Saks and
Saraf [GKSS17].

We now discuss this notion, starting with a discussion of Natural Proofs which motivated
the definition.

1The results in this chapter have appeared in [CKR+20].
2Sometimes, these results are conditional, as in [RR97].

87

6.1.1 The Natural Proofs framework of Razborov and Rudich

Razborov and Rudich [RR97] noticed that underlying many of the lower bound proofs known
in Boolean circuit complexity, there was some common structure. They formalized this com-
mon structure via the notion of a Natural Property, which we now define.

Definition 6.1. A subset P ⊆ { f : {0, 1}n → {0, 1}} of Boolean functions is said to be a natural
property useful against a class C of Boolean circuits if the following are true.

• Usefulness. Any Boolean function f : {0, 1}n → {0, 1} that can be computed by a Boolean
circuit in C does not have the property P .

• Constructivity. Given the truth table of a Boolean function f : {0, 1}n → {0, 1}, whether or
not it has the property P can be decided in time polynomial in the length of the input, that is in
time 2O(n).

• Largeness. For all large enough n, at least a 2−O(n) fraction of all n variate Boolean functions
have the property P . ♦

A proof that a certain family of Boolean functions cannot be computed by circuits in C is
said to be a natural lower bound proof if the proof (perhaps implicitly) proceeds via establishing
a natural property useful against C, and showing that the candidate hard function has this
property. Razborov and Rudich then showed that most of the Boolean circuit lower bound
proofs that we know, e.g., lower bounds for AC0 circuits [FSS84, Hås86] or lower bounds for
AC0[⊕] circuits [Raz87, Smo87] fit into this framework (maybe with some work) and hence are
natural in this sense. Further, they argue that under standard cryptographic assumptions, the
proof of a lower bound against any sufficiently rich circuit class (such as the class P/ poly)
cannot be natural! Thus, under standard cryptographic assumptions, most of the current
lower bound techniques are not strong enough to show super-polynomial lower bounds for
general Boolean circuits.

We now move on to discuss a relatively recent analogue of the notion of Natural Proofs,
formalized in the context of algebraic computation.

6.1.2 Algebraically Natural Proofs

Considering that algebraic circuits seem like a fairly general and powerful model of compu-
tation, it is tempting to think that the natural proofs barrier of Razborov and Rudich [RR97]
also extends to this setting. This problem turns out to be a non-trivial one, and indeed it
is not known whether their results extend to algebraic circuits. This question is closely re-
lated to the question of whether cryptographically secure algebraic pseudorandom functions
can be computed by small and low degree algebraic circuits and there does not seem to be
substantial evidence one way or the other on this 3.

3Refer to [AD08] and [FSV18] for a more detailed discussion on this issue.

88

In the last few years, this question of trying to find an algebraic analogue of the barrier re-
sults in boolean circuits [RR97] has received substantial attention. It was observed by various
authors ([AD08, Gro15, FSV18, GKSS17]) that most of the currently known proofs of algebraic
circuit lower bounds fit into a common unifying framework, not unlike that in the boolean
setting [RR97], although of a more algebraic nature. Indeed, these proofs also implicitly go
via defining a property for the set of all polynomials and using this property to separate the
hard polynomial from the easy ones. Moreover, the notions of largeness and constructivity in
Definition 6.1 also seem to extend to these proofs.

We now discuss this framework in a bit more detail. The key notion here is that of an
equation of polynomials in a complexity class.

Definition 6.2 (Equations for a Class of Polynomials). For some n, d ∈ N, let Cn,d be a class of
n-variate polynomials of total degree at most d; i.e. Cn,d ⊆ F[x]≤d.

Then for N = (n+d
n), a nonzero polynomial PN(Z) is said to be an equation for Cn,d if for all

f (x) ∈ Cn,d, we have that PN(coeff(f)) = 0, where coeff(f) is the coefficient vector of f . ♦

The definition naturally extends to a class of polynomial families, as opposed to just a
class of polynomials as defined above. In particular, suppose that C is a class of polynomial
families {{ fn} : fn ∈ Cn,dn}, and {PN} is a polynomial family. Then, the family {PN} is said
to be a family of equations for C if there is an n0, such that for all n ≥ n0 the polynomial PN

is an equation for Cn,dn where N = (n+dn
n). That is, PN is an equation for Cn,dn for all large

enough n.

Intuitively, non-vanishing of an equation (for a class C) on the coefficient vector of a
given polynomial f is a proof that f is not in C. We note that the equations for a class
C evaluate to zero not just on the coefficient vectors of polynomials in C but also on the
coefficient vectors of polynomials in the Zariski closure of C. This framework comes up very
naturally in the context of algebraic geometry (and geometric complexity theory), where it is
often geometrically nicer to work with the variety obtained by taking the Zariski closure of a
complexity class.

Getting our hands on an equation of a variety gives us a plausible way to test and certify
non-membership in the variety, in other words, to prove a lower bound for the corresponding
complexity class. Thus, equations for a class gives an algebraic analogue of the notion of
natural properties useful against a class in [RR97]. Moreover, since a nonzero polynomial does
not vanish very often on a random input from a large enough grid, it follows that a nonzero
equation for a class C will be nonzero on the coefficient vector of a “random polynomial”.
Here by a random polynomial we mean a polynomial whose coefficients are independent
and uniformly random elements from some large enough set in the underlying field. With
appropriate quantitative bounds, this observation can be formalized to give an appropri-
ate algebraic analogue of the notion of largeness. Lastly, the algebraic circuit complexity of
the equation gives a natural algebraic analogue of the notion of constructivity. Intuitively,
any algebraic circuit lower bound which goes via defining a nonzero proof polynomial of
polynomially bounded degree that can be efficiently computed by an algebraic circuit is an

89

Algebraically Natural Proof of a lower bound.
We now formally define an algebraically natural proof.

Definition 6.3 (Algebraically natural proofs [FSV18, GKSS17]). Let C be a class of polynomial
families {{ fn,d} : fn,d ∈ Cn,d}.

Then, for a class D of polynomial families, we say that C has D-natural proofs if there is a family
{PN} ∈ D which is a non-trivial family of equations for C. ♦

In the rest of this chapter, whenever we say a natural proof, without specifying the class
D, we mean a VP-natural proof.

Analogous to the abstraction of natural proofs for Boolean circuit lower bounds, this frame-
work of algebraically natural proofs turns out to be rich and general enough that almost all
of our current proofs of algebraic circuit lower bounds are in fact algebraically natural, or
can be viewed in this framework with a little work [Gro15]. Thus, this definition seems like
an important first step towards understanding the strengths and limitations of many of our
current lower bound techniques in algebraic complexity.

The immediate next question is whether algebraically natural proofs are rich enough to
give strong algebraic circuit lower bounds. This can naturally be worded in terms of the
complexity of equations for the class VP as follows.

Question 6.4. For every constant c > 0, does there exist a nonzero polynomial family {PN,c} in VP

such that for all large enough n, the following is true?

For every family of polynomials { fn}n in VP, such that fn is an n variate polynomial of
degree nc, PN,c vanishes on the coefficient vector of fn for N = (n+nc

n).

Forbes, Shpilka and Volk [FSV18], and Grochow, Kumar, Saks and Saraf [GKSS17] argue
that under an appropriate (but non-standard) pseudorandomness assumption, the answer
to the question above is negative, that is, algebraically natural proof techniques cannot be
used to show strong lower bounds for algebraic circuits. To discuss this pseudorandomness
assumption formally, we need the following definition of succinct hitting sets.

Definition 6.5 (Succinct hitting sets for a class of polynomials (Informal)). For some n, d ∈ N,
let Cn,d be a class of n-variate polynomials of total degree at most d; that is, Cn,d ⊆ F[x]≤d.

Then for N = (n+d
n), we say that a class of N variate polynomials DN has Cn,d-succinct hitting

sets if for all 0 6≡ P(Z) ∈ DN , there exists some f ∈ Cn,d such that PN(coeff(f)) 6= 0. ♦

As with Definition 6.2, this definition naturally extends to polynomial families.
It immediately follows from the definitions that non-existence of D-natural proofs against

a class C is equivalent to the existence of C-succinct hitting sets for the class D. Forbes, Sh-
pilka and Volk [FSV18] showed that for various restricted circuit classes C and D, the class D
has C succinct hitting sets. Or equivalently, lower bounds for C cannot be proved via proof
polynomial families in D. However, this question has remained unanswered for more general
circuit classes C and D. In particular, if we take both C and D to be VP, we do not seem
to have significant evidence on the existence of VP succinct hitting sets for VP. In [FSV18],
the authors observed that showing VP succinct hitting sets for VP would immediately imply

90

non-trivial deterministic algorithms for polynomial identity testing, which via well known
connections between algebraic hardness and derandomisation will in turn imply new lower
bounds [HS80, KI04]. Thus, the problem of proving an unconditional barrier result for alge-
braically natural proof techniques via this route seems as hard as proving new circuit lower
bounds! It is, however, conceivable that one can show such a barrier conditionally. And in
some more structured settings, such as for the case of matrix completion, such results are
indeed known [BIJL18]. However, Question 6.4 continues to remain open. In particular, even
though many of the structured subclasses of VP have low degree equations which are very
efficiently computable, perhaps hoping that this extends to richer and more general circuit
classes is too much to ask for?

We are now ready to state our results.

6.1.3 Results in this chapter

In our main results, we make progress towards answering Question 6.4 in the affirmative. We
prove the following theorems.

Equations for polynomials in VP with coefficients of small complexity

Theorem 6.6. Let c > 0 be any constant. There is a polynomial family {PN,c} ∈ VPQ such that for
all large n and N = (n+nc

n), the following are true.

• For every family { fn} ∈ VPC, where fn is an n variate polynomial of degree at most nc and
coefficients in {−1, 0, 1}, we have

PN,c(coeff(fn)) = 0 ,

where coeff(fn) is the coefficient vector of fn.

• There exists a family {hn} of n variate polynomials and degree at most nc with coefficients in
{−1, 0, 1} such that

PN,c(coeff(hn)) 6= 0 .

Here for a field F, VPF denotes the class VP where the coefficients of the polynomials are
from the field F.

We remark that even though Theorem 6.6 is stated for polynomials with coefficients in
{−1, 0, 1}, the theorem holds for polynomials with coefficients as large as poly(N). However,
for brevity, we will confine the discussion in this chapter to polynomials with {−1, 0, 1}
coefficients.

We also prove an analogous theorem for finite fields of small size.

91

Theorem 6.7. Let F be any finite field of constant size and c > 0 be any constant. There is a
polynomial family {PN,c} ∈ VPF such that for all large enough n and N = (n+nc

n), the following are
true.

• For every { fn} ∈ VPF, where fn is an n variate polynomial of degree at most nc, we have

PN,c(coeff(fn)) = 0 .

• There exists a family {hn} of n variate polynomials and degree at most nc with coefficients in F

such that

PN,c(coeff(hn)) 6= 0 .

Furthermore, we also prove analogous statements for the larger class VNP, which we now
state.

Equations for polynomials in VNP with coefficients of small complexity

Theorem 6.8. Let c > 0 be any constant. There is a polynomial family {QN,c} ∈ VPQ such that for
all large n and N = (n+nc

n), the following are true.

• For every family { fn} ∈ VNPC, where fn is an n variate polynomial of degree at most nc and
coefficients in {−1, 0, 1}, we have

QN,c(coeff(fn)) = 0 .

• There exists a family {hn} of n variate polynomials and degree at most nc with coefficients in
{−1, 0, 1} such that

QN,c(coeff(hn)) 6= 0 .

Theorem 6.9. Let F be any finite field of constant size and c > 0 be any constant. There is a
polynomial family {QN,c} ∈ VPF such that for all large enough n and N = (n+nc

n), the following are
true.

• For every family { fn} ∈ VNPF, where fn is an n variate polynomial of degree at most nc, we
have

QN,c(coeff(fn)) = 0 .

• There exists a family {hn} of n variate polynomials and degree at most nc with coefficients in F

such that

QN,c(coeff(hn)) 6= 0 .

92

6.1.4 Discussion and relations to prior work

As is evident from the statements, our main theorems make some progress towards answering
Question 6.4 in the affirmative, at least in the setting of small finite fields and for polynomials
with small integer coefficients, in a fairly strong sense. In fact, as Theorem 6.8 and Theo-
rem 6.9 show, in the context of polynomials with coefficients of low complexity, not just VP
but even the seemingly larger class VNP has efficiently computable low degree4 equations.

Many of the families of polynomials commonly studied in algebraic complexity have in-
teger coefficients with absolute values bounded by 1, and fall in the setting of the results
here. Moreover, the condition of computing polynomials with bounded coefficients is a se-
mantic condition on a model, in the sense that even though the final output of the circuit is
required to have bounded coefficients, the circuit is free to use arbitrary constants from C

in the intermediate computation. Thus, it is conceivable that we might be able to prove a
super-polynomial lower bound on the algebraic circuit size for the permanent polynomial via
an algebraically natural proof constructible in VP, thereby separating VP and VNP. However,
since analogues of Theorem 6.6 and Theorem 6.7 are also true for VNP, any such separation
of VNP and VP will have to rely on more fine grained information on the equations, and not
just their degree and algebraic circuit size. Unfortunately, our proofs are all existential and
do not give a sense of what the polynomial families {PN,c} (or {QN,c}) might look like.

We also note that in the light of some of the prior work, the results here are perhaps a bit
surprising. The classes of polynomials in VP and VNP with small coefficients (or over small
finite fields), are seemingly rich and complex sets, and the main theorems here show (un-
conditionally) that they have equations which are also efficiently computable. As discussed
earlier in this introduction, this property is known to be true for many structured subclasses
of algebraic circuits (for example, homogeneous circuits of depth 3 and 4, multilinear for-
mulas, polynomials of small Waring rank). However, it is unclear if this property extends to
more general circuit classes, in particular VP (or VNP).

Indeed, following the [FSV18] and [GKSS17], much of the research on this problem (e.g.
[FSV18, BIJL18, BIL+19]) has focused on proving the non-existence of efficiently computable
equations for VP, and this line of work has made interesting progress in this direction for
many structured and special instances of problems of this nature. The results in [BIJL18,
BIL+19] draw connections between the existence of efficiently constructible equations char-
acterising a variety and the problem of testing (non)membership in it and use the condi-
tional hardness of the (non)membership testing problem for certain varieties to rule out the
existence of efficiently computable equations for them. More precisely, Bläser, Ikenmeyer,
Jindal and Lysikov [BIJL18] show that if all the defining equations for the variety of matri-
ces with zero permanent are constructible by small constant-free algebraic circuits, then the
non-membership problem for this variety can be decided in the class ∃BPP. Thus, unless
P#P ⊆ ∃BPP, the defining equations of this variety do not have small, low degree constant

4Throughout this chapter, by a low degree polynomial family, we mean a polynomial family whose degree is
polynomially bounded in its number of variables.

93

free algebraic circuits. In a subsequent work [BIL+19], the results of [BIJL18] are general-
ized to min-rank or slice-rank varieties. However, in the bounded coefficient setting (and over
small finite fields), our results show that the contrary is true, and VP does have efficiently
computable low degree equations. We also remark that because of the setting of bounded
integer coefficients or small finite fields in this work, this natural connection between variety
non-membership and defining equations of varieties discussed in [BIJL18, BIL+19] appears to
break down.

A positive result on the complexity of equations of naturally occurring varieties in al-
gebraic complexity appears in a recent work of Kumar and Volk [KV20] where they show
polynomial degree bounds on the equations of the Zariski closure of the set of non-rigid ma-
trices and small linear circuits over all large enough fields. However, we do not know if any
of these low degree equations can be efficiently computed by an algebraic circuit.

As alluded to in the previous paragraphs, most of the prior work related to Question 6.4
has focused on looking for evidence that the answer to it is negative, that is VP does not have
efficiently computable and low degree equations. We hope that the results in this chapter
also highlight the possibility of there being interesting upper bounds for the equations for
rich and powerful algebraic complexity classes; a line of research that hasn’t received much
attention so far.

Other related work. Many of the algebraic circuit lower bounds (e.g. lower bounds for
depth-3 and depth-4 circuits, and lower bounds for multilinear models) are obtained by con-
sidering the rank of certain matrices as a complexity measure. In their recent works, Efre-
menko, Garg, Oliveira and Wigderson [EGOW18] and Garg, Makam, Oliveira and Wigderson
[GMOW19], discuss limitations of rank based methods towards proving lower bounds. In par-
ticular, [EGOW18] shows that some of these rank based methods cannot prove lower bounds
better than Ωd(nbd/2c) on tensor rank (respectively Waring rank) for an order d tensor of side-
length n. Building on [EGOW18], in [GMOW19], the authors demonstrate that one cannot
hope to significantly improve the known lower bounds for tensor rank for order d tensors
by merely lifting lower bounds on tensors of lower order. However, we note that a general
algebraically natural proof of a lower bound does not necessarily fit into the framework of
[EGOW18, GMOW19], and so these limitations for the so called rank methods do not seem to
immediately extend to algebraically natural proofs in general. As discussed earlier, in the
light of the results here, it is conceivable that we might be able to improve the state of the art
for general algebraic circuit lower bounds, using techniques that are algebraically natural.

For Boolean circuits, Chow [Cho11] circumvents the natural proofs barrier in [RR97] by
providing (under standard cryptographic assumptions) an explicit almost natural proof that
is useful against P/ poly as well as constructive in nearly linear time, but compromises on
the largeness condition. Furthermore, Chow [Cho11] shows the unconditional existence of a
natural property useful against P/ poly (infinitely often) constructive in linear size that has a
weakened largeness condition. In some sense, Theorem 6.7 and Theorem 6.6 are analogous
to the work of Chow [Cho11], albeit in the algebraic world.

94

On the largeness criterion. It has been observed in the definitions of algebraically natural
proofs [GKSS17, FSV18] that in the algebraic setting, an analogue of the largeness criterion in
Definition 6.1 is often available for free. The reason being that a nonzero equation for any
class of polynomials vanishes on a very small fraction of all polynomials over any sufficiently
large field. However, this trade-off becomes a bit subtle when considering polynomials over
finite fields of small size, or polynomials with bounded integer coefficients. In particular,
as we observe in the course of the proofs of our results, we still have a large number of
polynomials whose coefficients will keep {PN,c} (and {QN,c}) nonzero, although this set is no
longer a significant fraction of the set of all polynomials.

6.1.5 An overview of the proof

At a high level, the idea behind our results is to try and come up with a non-trivial property of
polynomials which every polynomial with a small circuit satisfies. By a non-trivial property,
we mean that there should exist (nonzero) polynomials which do not have this property. The
hope is that once we have such a property (which is nice enough), one can try to transform
this into an equation via an appropriate algebraization. The property that we finally end up
using is the existence of (non-explicit) hitting sets for polynomials with small circuits.

A hitting set for a class C of polynomials over a field F is a set of points H, such that
every nonzero polynomial in C evaluates to a nonzero value on at least one point in H. We
then turn this property of not-vanishing-everywhere on H into an equation in some settings to
get our main theorems.

To make things a bit more formal, let us consider the map ΦH, defined by the hitting set
H of C on the set of all polynomials, that maps any given polynomial f to its evaluations over
the points in H. It is clear from the above observation that any nonzero polynomial in the
kernel of ΦH is guaranteed to be outside C. Thus, if there were a nonzero polynomial that
vanishes on all polynomials f /∈ ker(ΦH), we have an equation for C.

Moreover, if such a polynomial happened to have its degree and circuit complexity poly-
nomially bounded in its number of variables, we would have our main theorems. However,
note that not being in the kernel of a linear map seems to be a tricky condition to check via a
polynomial (as opposed to the complementary property of being in the kernel, which can be
easily checked via a polynomial). To prove our theorems, we get past this issue in the setting
of small finite fields, and for polynomials over C with bounded integer coefficients.

Over a finite field F, a univariate polynomial that maps every nonzero x ∈ F to zero
and vice versa, already exists in q(x) = 1− x|F|−1. Therefore, for a given polynomial f , the
equation essentially outputs ∏h∈H q(f (h)). Clearly, for a polynomial f , ∏h∈H q(f (h)) is zero
if and only if f evaluates to a nonzero value on at least one point in H.

To generalize this to other fields, we wish to find a “low-degree” univariate q(x) that maps
nonzero values to 0, and zero to a nonzero value. We observe that in the setting when the
polynomials in C have integer coefficients of bounded magnitude , we can still obtain such a
univariate polynomial, and in turn a non-trivial defining equation. Indeed, if q were such a

95

univariate, we essentially output ∏h∈H q(f (h)), for a given polynomial f . This step relies on
a simple application of the Chinese Remainder Theorem.

In order to show that the equations are non-trivial in the sense that there exist polynomials
with bounded integer coefficients which do not pass this test, we need to show that there
are nonzero polynomials with bounded integer coefficients which vanish everywhere on the
hitting set H. We show this via a well known lemma of Siegel5, which uses a simple pigeon
hole argument to show that an under-determined system of homogeneous linear equations
where the constraint matrix has small integer entries has a nonzero solution with small integer
entries.

As it turns out, our proofs do not use much about the class VP except for the existence of
small hitting sets for polynomials in the class. It is not hard to observe that this property is
also true for the seemingly larger class VNP and hence the results here also extend to VNP.

We remark that given the hitting set H explicitly, the construction of the equation is com-
pletely explicit. In other words, the non-explicitness in our construction comes only from
the fact that we do not have explicit constructions of hitting sets for algebraic circuits. Also,
using the techniques in this work, one can prove a general theorem of the form if a class C has
“small” hitting sets of “low” bit complexity, then there are efficient equations for the polynomials in
C that have coefficients of “moderate” size. We shall skip the formal statement of such a general
theorem to avoid cumbersome notation and only focus on the two interesting consequences
of this statement, for the classes VP and VNP.

Organization. We begin with some notations and preliminaries in Section 6.2 before moving
on to prove Theorem 6.7 in Section 6.3 and Theorem 6.6 in Section 6.4. In Section 6.5, we
observe that these results also generalize to VNP.

6.2 Some Background

We begin by defining “a slice” of VP (and VNP), which is basically the subset of VP (and VNP)
of polynomials whose degrees are bounded from above by a specific polynomial in their arity.

Definition 6.10 (VP[c] and VNP[c]). For a fixed constant c, we will define VP[c]
F to denote

VP
[c]
F :=

{
{ fn} ∈ VPF : fn ∈ F[x1, . . . , xn]

≤nc
}

,

and VNP
[c]
F to denote

VNP
[c]
F :=

{
{ fn} ∈ VNPF : fn ∈ F[x1, . . . , xn]

≤nc
}

,

5A statement of the lemma can be found here. Refer to [Sie14] for details.

96

https://en.wikipedia.org/wiki/Siegel%27s_lemma

We also consider polynomials { fn} over integers whose coefficients are in {−1, 0, 1}. However,
it is important to note that even in this setting the bound is only on the coefficients of fn; the circuit
computing fn may use arbitrary constants from the underlying field, or an extension. ♦

Throughout this chapter, we use coeff(f) to denote the vector6 of coefficients of f .
We will need the following notion of universal circuits defined by Raz [Raz10]. A universal

circuit is such that any polynomial computed by a small circuit is a simple projection of it.
For the sake of completeness, we also include a proof sketch.

Lemma 6.11 (Universal circuit, [Raz10]). Let F be any field and n, s ≥ 1 and d ≥ 0. Then there
exists an algebraic circuit U of size poly(n, d, s) computing a polynomial in F[x1, . . . , xn, y1, . . . , yr]

with r ≤ poly(n, d, s) such that:

• degx(U (x, y)), degy(U (x, y)) ≤ poly(d);

• for any f ∈ F[x1, . . . , xn] with degx(f) ≤ d that is computable by an algebraic circuit of size s,
there exists an a ∈ Fr such that f (x) = U (x, a).

Sketch. Let f be an n-variate degree d polynomial computable by a circuit C of size s. Using
the classical depth reduction result due to Valiant, Skyum, Berkowitz and Rackoff [VSBR83], f
has a circuit C′ of size s′ = poly(n, d, s) and depth ` = O(log d) with the following properties
(see e.g. [Sap15] for a complete proof).

• All the product gates have fan-in at most 5.

• C′ is layered, with alternating layers of sum and product gates.

• The layer above the leaves is of product gates, and the root is an addition gate.

We can therefore construct a layered universal circuit U for the given parameters n, d, s.
The circuit will have ` layers, with V1, V2, . . . , V` being the layers indexed from leaves to the
root. So V` has a single gate, which is the output gate of the circuit, and V1 has n + 1 gates,
labelled with the variables x1, . . . , xn and with the constant 1. All the gates in U are then
connected using auxiliary variables y, as follows.

• V2 has ≤ (n + 1)5 product gates, with each gate computing a unique monomial of
degree at most 5 in the variables x.

• For every odd i with 2 < i < `, the layer Vi has s′ addition gates that are all connected to
all the gates in the layer Vi−1, with each of the wires being labelled by a fresh y-variable.

• For every even i with 2 < i < `, the layer Vi has (s′
5) product gates, each one multiplying

a unique subset of 5 gates from Vi−1.

It is now easy to see that U has at most `(ns′)5 gates, which is poly(n, d, s). Also, deg(U) ≤
5`, which is poly(d); and |y| = r ≤ ` · (ns′)6, which is poly(n, d, s). Further, by the depth
reduction result [VSBR83], the circuit C′ for f can be obtained by setting the auxiliary variables
y appropriately. Since the choice of f was arbitrary, this finishes the proof.

6We do not explicitly mention the monomial ordering used for this vector representation, since all our state-
ments work for any monomial ordering.

97

6.3 Constructible equations for VP over small finite fields

In this section, we prove our main theorem for finite fields. As mentioned in the introduction,
our proof uses the existence of non-explicit hitting sets for small circuits. This fact appears to
be folklore but we state below the version that can be found in Forbes’ thesis [For14].

Lemma 6.12 (Folklore (cf. Lemma 3.2.14 in [For14])). Let F be a finite field with |F| ≥ d2. Let
C(n, d, s) be the class of polynomials in F[x1, . . . , xn] of degree at most d that are computable by fan-in
2 algebraic circuits of size at most s. Then, there is a non-explicit hitting set for C of size at most
d2s · (log n + 2 log s + 4)e.

The above lemma shows that over large enough finite fields, there are non-explicit hitting
sets of size O(s2) (when n, d ≤ s). We now use this to prove Theorem 6.7 which we first
restate below.

Theorem 6.7. Let F be any finite field of constant size and c > 0 be any constant. There is a
polynomial family {PN,c} ∈ VPF such that for all large enough n and N = (n+nc

n), the following are
true.

• For every { fn} ∈ VPF, where fn is an n variate polynomial of degree at most nc, we have

PN,c(coeff(fn)) = 0 .

• There exists a family {hn} of n variate polynomials and degree at most nc with coefficients in F

such that

PN,c(coeff(hn)) 6= 0 .

Proof. Let dn = nc and sn = nlog n (in fact any sn = nω(1) would work). Since F has constant
size, and we need fields of sufficiently large size for invoking Lemma 6.12, we work over an
extension Kn of F of size at least n2c and at most O(n2c). Let rn = [Kn : F] = O(log n).
Note that the elements of Kn can also be interpreted as vectors over F via an F-linear map
Φ : Kn → Frn . We can then define for any i ∈ [rn], Φi : Kn → F to be its projection to the i-th
co-ordinate. That is, Φi : α 7→ (Φ(α))i for every i ∈ [rn].

By Lemma 6.12, there are hitting sets in Kn
n for C(n, dn, sn) of size at most O(s2

n); let Hn be
such a hitting set.

For N = (n+dn
n), let us index the set [N] by the set x≤dn of n-variate monomials of degree

at most dn. For a point a ∈ Hn, we define the vector eval(a) ∈ KN
n as eval(a)m = m(a) where

m ∈ x≤dn (that is, the m-th coordinate is the evaluation of the monomial m at a). To get vectors
over F instead, for each i ∈ [rn], we shall define eval(a)(i) ∈ FN as eval(a)(i)m = Φi(m(a)).

98

We are now ready to define the polynomial family {PN}.

PN(zm : m ∈ x≤dn) := OR(z) · ∏
a∈Hn

 rn

∏
i=1

1−
(

∑
m

zm · eval(a)(i)m

)|F|−1
 ,

where OR(z) =

(
1− ∏

m∈x≤dn

(
1− z|F|−1

m

))

Constructivity. Note that deg(PN) ≤ |F| · (N + (|Hn| · rn)) = O(N + s2
n · log n) = O(N) and

the above expression immediately yields an O(N2)-sized circuit for PN . Therefore, the above
family PN ∈ VPF.

Usefulness. Now consider any family { fn} ∈ VP
[c]
F ; let k be an integer such that for all

large enough n we have that fn is computable by size nk circuits. We need to show that
PN(coeff(fn)) = 0 for all large enough n.

For any polynomial g ∈ F[x1, . . . , xn] with deg g ≤ nc, we have

P(coeff(g)) = OR(coeff(g)) · ∏
a∈Hn

 rn

∏
i=1

1−
(

∑
m

coeff(g)m · eval(a)(i)m

)|F|−1
 ,

= OR(coeff(g)) · ∏
a∈Hn

(
rn

∏
i=1

(
1− (Φi(g(a)))|F|−1

))
,

=

1 if g 6= 0 and g(a) = 0 for all a ∈ Hn,

0 if g = 0 or g(a) 6= 0 for some a ∈ Hn.

If fn = 0, then OR(coeff(fn)) = 0. Else, if n is chosen large enough, then fn is computable
by circuits of size at most sn = nlog n and the set Hn is a hitting set for fn. Therefore, there
is some point a ∈ Hn such that fn(a) 6= 0. Hence, {PN} vanishes on the coefficient vector of
every polynomial in VP

[c]
F .

A remark on the largeness. From the definition of PN , any nonzero g ∈ F[x1, . . . , xn]≤dn such
that g(a) = 0 for all a ∈ Hn will satisfy PN(coeff(g)) 6= 0. If we interpret the coefficients of
g as indeterminates, each equation of the form g(a) = 0 introduces one homogeneous linear
constraint in these N indeterminates, over the extension Kn. Each such constraint can be
interpreted as rn = O(log n) homogeneous linear constraints, over F. Since |Hn| � N, the set
of g’s that are not annihilated by PN form a subspace of dimension at least N−O(|Hn| log n).
Thus, there are at least

(
|F|N−O(|Hn| log n) − 1

)
many g’s such that PN(coeff(g)) 6= 0. In fact,

the coefficient vector of such a polynomial g can easily be found in time poly(N) using
Gaussian elimination.

99

6.4 Constructible equations for VP with coefficients in {−1, 0, 1}

In this section, we prove Theorem 6.6. As before, our proof uses the existence of non-explicit
hitting sets for circuits of small size. When the underlying field is C, their existence is known
due to the results of Heintz and Schnorr [HS80] as stated below.

Lemma 6.13 (Hitting sets for efficiently computable polynomials [HS80]). For all n, d, s ∈ N

large enough, there exist (non-explicit) hitting setsH for C(n, d, s) (the set of all n-variate polynomials
with degree at most d that are computable by algebraic circuits of size at most s), such that H ⊂
[(sd)2]n and |H| = poly(s).

We now prove our main theorem which we restate below.

Theorem 6.6. Let c > 0 be any constant. There is a polynomial family {PN,c} ∈ VPQ such that for
all large n and N = (n+nc

n), the following are true.

• For every family { fn} ∈ VPC, where fn is an n variate polynomial of degree at most nc and
coefficients in {−1, 0, 1}, we have

PN,c(coeff(fn)) = 0 ,

where coeff(fn) is the coefficient vector of fn.

• There exists a family {hn} of n variate polynomials and degree at most nc with coefficients in
{−1, 0, 1} such that

PN,c(coeff(hn)) 6= 0 .

As mentioned earlier, the proof would also generalise in a straightforward manner for
polynomial families { fn} ∈ VP

[c]
Z whose coefficients are bounded by N. We state this for

polynomials whose coefficients are in {−1, 0, 1} just to avoid cumbersome notation.

Proof. The proof will proceed similar to the proof of Theorem 6.7, with a careful use of the
Chinese Remainder Theorem.

Let dn = nc and sn = nlog n (again, sn needs to be barely super-polynomial in n). For
N = (n+dn

n), let us index the set [N] by the set x≤dn of n-variate monomials of degree at
most dn. For a point a ∈ Zn, we define the vector eval(a) ∈ QN as eval(a)m = m(a) where
m ∈ x≤dn (that is, the m-th coordinate is the evaluation of the monomial m at a). Therefore,
for any n-variate polynomial f of degree at most dn, we have f (a) =

〈
coeff(f), eval(a)

〉
.

Let Bn = (sn · dn)2. By Lemma 6.13, there are hitting sets in [B]n of size poly(sn) for
the class C(n, dn, sn) (of n-variate polynomials, of degree at most dn that are computable by
circuits of size sn) with coefficients in ∆ = {−1, 0, 1}. Let Hn be one such set. Note that for
any n-variate polynomial f of degree at most dn and coefficients in ∆, and any a ∈ Hn, we

100

have | f (a)| ≤ N · Bdn , which unfortunately is not poly(N). However, we can work with some
“proxy evaluations” by simulating Chinese Remaindering.

For any a ∈ Hn and a positive integer r, define the vector ẽvalr(a) as follows:

ẽvalr(a)m := (m(a) mod r) for all m ∈ x≤dn .

It is to be stressed that ẽvalr(a) is a vector over Q, whose coordinates are integers from the
set {0, . . . , r− 1}.

Claim 6.14. Suppose f is a polynomial with integer coefficients, and a ∈ Zn. If f (a) 6= 0 and
| f (a)| ≤ M, then there is some r ≤ O((log M)2) such that〈

coeff(f), ẽvalr(a)
〉
6= 0 mod r.

Proof of claim. Let ` = log(M + 1), note that the LCM of the set [`2] is at least 2` > M. Since
f (a) is a nonzero integer with | f (a)| ≤ M, by the Chinese Remainder Theorem there is some
prime r ≤ `2 such that f (a) 6= 0 mod r.〈

coeff(f), ẽvalr(a)
〉
=
〈

coeff(f), evalr(a)
〉

mod r

= f (a) mod r

6= 0 mod r

Let M = N · Bdn and ` = log(M + 1). For any r ∈ [`2], any a ∈ Hn and n-variate
polynomial f of degree at most dn and coefficients from ∆, we have∣∣∣〈coeff(f), ẽvalr(a)

〉∣∣∣ ≤ N · `2 =: R.

We are now ready to define the polynomial family {PN}.

PN(zm : m ∈ x≤n) = OR(z) · ∏
a∈Hn

`2

∏
r=2

Qr

(〈
z, ẽvalr(a)

〉)
,

where Qr(x) = ∏
i∈[−R,...,R]
i mod r 6=0

(x− i),

OR(z) = 1− ∏
m∈x≤dn

(1− zm)

Constructivity. For our setting of the underlying parameters, |Hn| ≤ nO(log n), Bn ≤ nO(log n),
M ≤ N · nO(dn log n) and ` = poly(n); and R ≤ O(N poly(n)) = Õ(N). Therefore, PN is a
polynomial of degree at most Õ(N2). Moreover, the above expression also shows that PN is
computable by a circuit of size Õ(N3) and hence {PN} ∈ VP.

101

Usefulness. Fix a polynomial family { fn} ∈ VP[c] such that the coefficients of fn are in
{−1, 0, 1} for all n. Let k be an integer such that for all large enough n we have that fn is
computable by size nk circuits. We need to show that PN(coeff(fn)) = 0 for all large enough
n. Note that we have OR(coeff(fn)) 6= 0 if fn is nonzero, and 0 if fn = 0. Hence, it suffices to
show that PN(coeff(fn)) = 0 for nonzero fn.

For any large enough n so that 0 6= fn is computable by circuits of size at most sn = nlog n

and the set Hn is a hitting set for fn, we know that fn(a) 6= 0 for some a ∈ Hn. Therefore,
for some r ∈ [`2], we have that

〈
coeff(f), ẽvalr(a)

〉
is a nonzero integer in {−R, . . . , R} that

is not divisible by r. Hence, we have

Qr

(〈
coeff(f), ẽvalr(a)

〉)
= 0,

=⇒ P(coeff(f)) = 0.

A remark on the largeness. From the definition of PN , any nonzero g ∈ F[x1, . . . , xn]≤dn

such that g(a) =
〈

coeff(g), eval(a)
〉

= 0 for all a ∈ Hn will satisfy PN(coeff(g)) 6= 0. In
order to show that there are many such g’s with coefficients in {−1, 0, 1}, we use a pigeon-
hole argument, which is essentially an instance of a well known lemma of Siegel [Sie14]. For
completeness, we include a sketch of the argument here.

Consider the map Γ : ZN → Z|Hn| defined as

Γ(zm : m ∈ x≤dn) := (〈z, eval(a)〉 : a ∈ Hn)

The map Γ is linear in the sense that Γ(z + z′) = Γ(z) + Γ(z′). Consider the restriction
of Γ on just {0, 1}N ; the range of Γ under this restriction is {−M, . . . , M}|Hn|. Hence, by the
pigeon-hole-principle there must be some b ∈ {−M, . . . , M}|Hn| with at least 2N/(2M+ 1)|Hn|

pre-images inside {0, 1}N . If h0 is any fixed preimage, then{
h− h0 ∈ {−1, 0, 1}N : h ∈ Γ−1(b) ∩ {0, 1}N

}
are all coefficient vectors of polynomials g ∈ Z[x1, . . . , xn]≤dn with coefficients in {−1, 0, 1}
whose coefficient vectors are not zeroes of PN .

It is worth mentioning that there are 3N possible polynomials in Z[x1, . . . , xn]≤dn with
coefficients in {−1, 0, 1}. The above remark on the largeness shows that there are 2N−q(n)

many polynomials g such that PN(coeff(g)) 6= 0; for some q(n) = nO(log n). Also note that
unlike Theorem 6.7, finding such a polynomial g would probably require time exp(N), since
it encodes the minimum subset sum problem.

102

6.5 Equations for VNP

We shall now state and prove the VNP analogues of Theorem 6.6 and Theorem 6.7. First, we
have the following definition.

Definition 6.15 (Definability of Polynomials). For s ≥ 1, a polynomial fn is said to be s-definable
if there exists a polynomial gs ∈ C(s, s, s) such that for m = s− n,

fn(x) = ∑
α∈{0,1}m

gs(x, α) .

Further, let us denote by D(n, d, s) the class of all n-variate polynomials of degree d that are s-definable.
♦

Remark 6.16. Note that for every family { fn} ∈ VNP, there is a polynomially bounded function
s(n) > n, d(n) such that fn is s(n)-definable, for all large n. ♦

6.5.1 VNP over Small Finite Fields

As in the VP case, we will need the existence of non-explicit hitting sets. A slight modification
to the proof of Lemma 3.2.14 in [For14]) gives us the following statement.

Lemma 6.17. Let F be a finite field with |F| ≥ d2. Let D(n, d, s) be the class of polynomials in
F[x1, . . . , xn] of degree at most d that are s-definable. Then, there is a non-explicit hitting set H for
D(n, d, s) of size at most d2s · (3 log s + 4)e.

Proof. In order to prove the existence of a hitting set for the class D(n, d, s), we will need a
bound on the number of polynomials in the class D(n, d, s) as well as a bound on the size
of an explicit hitting set for the class of n-variate degree at most d polynomials. These two
bounds are summarized in the following claims, proofs of which can be found in [For14].

Claim 6.18 (Lemma 3.1.6 in [For14]). Let F be a finite field and n, s ≥ 1. There are at most
(8n |F| s2)s n-variate polynomials in F[x] computable by (single-output) algebraic circuits of size ≤ s
and fan-in ≤ 2.

Claim 6.19 (Lemma 3.2.13 in [For14]). Let F be a finite field with |F| ≥ (1 + ε)d. Let C ⊆ F[x] be
a finite set of n-variate polynomials of degree < d. Then there is a non-explicit hitting set for C of size
≤
⌈
log1+ε |C|

⌉
.

Note that by definition, the number of n-variate polynomials that are s-definable is at
most the number of polynomials in C(s, s, s); the class of s-variate polynomials of degree ≤ s
computable by size s algebraic circuits of fan-in ≤ 2. Thus, by Claim 6.18, |D(n, d, s)| ≤
(8 |F| s3)s.

The rest of the proof follows exactly along the lines of the proof of Lemma 3.2.14 in [For14].

As |F| ≥ d2, we have d ≤ |F|, and so |F| ≥ (1 + ε)d for (1 + ε) =
√
|F|. Thus, using

ε =
√
|F| − 1 in Claim 6.19, we get that there is a non-explicit hitting set H for D(n, d, s) of

103

size at most⌈
log√|F| |D(n, d, s)|

⌉
≤
⌈

log√|F|(8 |F| s
3)s
⌉
=
⌈

s(2 + 2 log|F|(8s3))
⌉
=
⌈

s(2 + 6 log|F|(2s))
⌉

Finally, as |F| ≥ 2, we have

|H| ≤ ds · (2 + 6 log(2s))e = d2s · (1 + 3 log(2s))e = d2s · (3 log s + 4)e .

This completes the proof.

By Remark 6.16, we have that over large enough finite fields, there are non-explicit hitting
sets of size O(s2) for the polynomials in VNP that are s-definable. Since the proof of Theo-
rem 6.7 does not use any property of VP except for the existence of non-trivial hitting sets,
we get the following theorem. The proof is omitted, since it is exactly the same except we use
Lemma 6.17 instead of Lemma 6.12.

Theorem 6.9. Let F be any finite field of constant size and c > 0 be any constant. There is a
polynomial family {QN,c} ∈ VPF such that for all large enough n and N = (n+nc

n), the following are
true.

• For every family { fn} ∈ VNPF, where fn is an n variate polynomial of degree at most nc, we
have

QN,c(coeff(fn)) = 0 .

• There exists a family {hn} of n variate polynomials and degree at most nc with coefficients in F

such that

QN,c(coeff(hn)) 6= 0 .

6.5.2 Polynomials in VNP with Small Integer Coefficients

Our argument will be identical to that in Section 6.4, for which we will need a statement
analogous to Lemma 6.13 showing the existence of non-explicit hitting sets for VNP with small
bit-complexity. We will first give a universal map for the polynomials in VNP, analogous to
Lemma 6.11; for which we need the following lemma.

Lemma 6.20 (Coefficient Vectors of Definable Polynomials). Let f ∈ C[x] be an n-variate poly-
nomial of degree d that is s-definable. Then there exists an s-variate polynomial g and a linear map
Ln,d,s, such that coeff(f) = L(coeff(g)). Furthermore, the map L depends solely on n, d and s.

Proof. Let m = s− n. Since f is s-definable, there is an s-variate polynomial g(x, w) of degree
at most s as follows.

f (x) = ∑
α∈{0,1}m

g(x, w = α)

104

Now observe that for any monomial xe ∈ x≤d,

coeffxe(f) = coeffxe

 ∑
α∈{0,1}m

g(x, α)


= ∑

α∈{0,1}m
coeffxe (g(x, α))

= ∑
α∈{0,1}m

coeffxe

(
∑

wa∈w≤s

αa coeffwa(g(x, w))

)

= ∑
wa∈w≤s

 ∑
α∈{0,1}m

αa

 coeffxewa(g)

= ∑
wa∈w≤s

2(m−|supp(a)|) coeffxewa(g)

Now we can define the desired map L : CM → CN for M = (s+s
s) and N = (n+d

n), as follows.

Le(coeff(g)) = ∑
wa∈w≤s

2(m−|supp(a)|) coeffxewa(g) ∀e ∈ [N]

Lemma 6.21 (Universal Map for Definable Polynomials). Let s ≥ n ≥ 1 and d ≥ 0. Then for
N = (n+d

n) there exists a polynomial map U (y) : Cr → CN with r ≤ poly(n, d, s) such that:

• deg(U (y)) ≤ poly(s);

• for any f ∈ C[x1, . . . , xn] with degx(f) ≤ d that is s-definable, there exists an a ∈ Cr such that
coeff(f) = U (a).

Proof. Let D(n, d, s) be the class of all n-variate, degree d polynomials that are s-definable
and suppose fn(v) ∈ D(n, d, s). Then by Lemma 6.20 there exists an s-variate, degree s
polynomial gs ∈ C(s, s, s) such that the coefficients of fn are obtained by taking suitable linear
combinations of the coefficients of gs. Therefore we will now shift our focus to the coefficient
vectors of polynomials from C(s, s, s).

Using Lemma 6.21 for number of variables, degree and size, all bounded by s, we get a
universal circuit U (x, y) for C(s, s, s) with |y| = r ≤ sk for some constant k. We will assume
without loss of generality that degy(U) ≤ sk. Now for M = (s+s

s), we can view U (x, y) as
a polynomial map U : Cr → CM given by U (y) = (U (y1), . . . ,U (yM)), where Um(y) is the
coefficient of the monomial m ∈ x≤s in the polynomial U (x, y). Note that the degree of every
such Um(y) is at most sk.

Now by Lemma 6.21, for every gs ∈ C(s, s, s) the coefficient vector of gs is in the image
of U . Therefore, for N = (n+d

n), let L : CM → CN be the linear map given by Lemma 6.20.
Then for every fn ∈ D(n, d, s) the coefficient vector of fn is in the image of (L ◦ U) : Cr → CN .
Further, since L is a linear map, the degree of (L ◦ U) is also bounded by sk = poly(s).

We now prove the existence of non-explicit hitting sets of small bit-complexity even for

105

the class of efficiently definable polynomials with small integer coefficients.

Number of efficiently definable polynomials with small coefficients

We first need to bound the number of definable polynomials with small coefficients. The
lemma below is a slight modification of a result of Hrubeš and Yehudayoff [HY11a, Claim
3.6]. The proof uses some basic algebraic geometry notions such as dimension and degree of
varieties and also employs Bézout’s theorem, which may be found in most algebraic geometry
texts (e.g. [DS13]).

Lemma 6.22 ([HY11a]). Let V ∈ Cn be an irreducible algebraic variety of dimension k and degree r.
Suppose F = (F1, . . . , Fm) with Fi ∈ F[x1, . . . , xn]≤d is a polynomial map. Then, for ∆ ⊂ Z,

|F(V) ∩ ∆m| ≤ r · (|∆| · d)k.

Proof. The proof is by induction on the dimension k. For the base case of k = 0, we would
have |V| = 1 as V is irreducible and hence |F(V)| = 1.

For each i ∈ [m] and b ∈ ∆, define Vi,b = V ∩ F−1
i (b). Suppose for every i ∈ [m] there is

just a single b ∈ ∆ such that Vi,b 6= ∅, then clearly |F(V) ∩ ∆m| ≤ 1. Otherwise, let i be such
that at least two of {Vi,b : b ∈ ∆} are non-empty. Since at least two of them are non-empty,
each Vi,b is a proper sub-variety of V and hence dim(Vi,b) < dim(V). Let the non-empty
varieties be decomposed into irreducible varieties as

Vi,b = V(1)
i,b ∪ · · · ∪V(tb)

i,b .

By Bézout’s theorem (see e.g., [DS13]), we also have ∑j deg(V(j)
i,b) ≤ d · deg(Vi,b). Then,

F(V) ∩ ∆m ⊆
⋃

b∈∆

F(Vi,b) ∩ ∆m

=
⋃

b∈∆

⋃
j∈[tb]

F(V(t)
i,b) ∩ ∆m

=⇒ |F(V) ∩ ∆m| ≤ ∑
b∈∆

∑
j∈[tb]

deg(V(j)
i,b)(|∆| · d)

k−1

≤ deg(V) · (|∆| · d)k.

Corollary 6.23. The number of polynomials with coefficients in ∆ ⊂ Z that are s-definable is at most
(|∆| · s)poly(s).

Proof. By Lemma 6.21, we know that any s-definable polynomial can be seen as an image of
a universal map U : F[x, y] → F[x]. Thus, if we view U as a polynomial map of the form
U = (U1(y), . . . ,UN(y)), then any polynomial of the type we wish to count is contained in
the set (U (C|y|) ∩ ∆N). Here Um computes the coefficient of the m-th monomial in x, and by
Lemma 6.21, |y| = poly(s) and deg(Um) = poly(s) for every m ∈ [N].

106

Finally, note that C|y| is an irreducible variety which has degree 1 and dimension |y|. Thus
using Lemma 6.22, we have that the number of polynomials with coefficients in ∆ that are
s-definable is at most (|∆| · poly(s))poly(s) ≤ (|∆| · s)poly(s).

Existence of hitting sets with low bit-complexity

Lemma 6.24 (Hitting sets for efficiently definable polynomials). Let ∆ ⊂ Z. There are (non-
explicit) hitting sets H for D(n, d, s) (the set of all n-variate polynomials with degree at most d that
are s-definable) with coefficients in ∆, such that H ⊂ [ds |∆|]n and |H| = poly(s).

Proof. Let H be a uniformly random subset of size t = poly(s) of the grid [ds |∆|]n. For any
nonzero polynomial f (x) ∈ D(n, d, s), by the Polynomial Identity Lemma (Lemma 1.7) we
know that the number of zeroes of any n-variate degree d polynomial f on the grid [ds |∆|]n

is upper bounded by d(ds |∆|)n−1 = 1
s|∆| (ds |∆|)n. Thus, the probability that H is not a hitting

set for a fixed f ∈ D(n, d, s) is equal to the ratio
(
((ds|∆|)n/s|∆|

t)/((ds|∆|)n

t)
)

, which can be upper

bounded by (1/s |∆|)Ω(t).
Let D′ be the set of all polynomials in D(n, d, s) whose coefficients are from ∆. Therefore,

the probability that H is not a hitting set for D′ is upper bounded by:

Pr
a1,...,at∈[ds|∆|]n

[
{a1, . . . , at} not a hitting set for C ′

]
≤
∣∣C ′∣∣ ·(1

s |∆|

)Ω(t)

≤ (s |∆|)poly(s)−Ω(t) (Corollary 6.23)

� 1. (if t = poly(s) large enough)

Hence, there exist poly(s)-sized hitting sets H ⊂ [ds |∆|]n for D′.

We can now prove the following theorem along the lines of Theorem 6.6. The proof of
Theorem 6.6 almost directly extends here, as the proof does not assume anything about VP
except for the existence of non-explicit hitting sets of small bit-complexity, which here is given
by Lemma 6.24. We omit the proof to avoid repetition.

Theorem 6.8. Let c > 0 be any constant. There is a polynomial family {QN,c} ∈ VPQ such that for
all large n and N = (n+nc

n), the following are true.

• For every family { fn} ∈ VNPC, where fn is an n variate polynomial of degree at most nc and
coefficients in {−1, 0, 1}, we have

QN,c(coeff(fn)) = 0 .

• There exists a family {hn} of n variate polynomials and degree at most nc with coefficients in
{−1, 0, 1} such that

QN,c(coeff(hn)) 6= 0 .

107

Remark 6.25. In the setting of small integer coefficients (or over small finite fields), there exist con-
structible low degree equations for both VP and VNP. However, this does not mean that the framework
of algebraically natural proofs cannot be used for separating VP and VNP. It is worth noting that the
equations for VP and VNP that are constructible in VP seem to be different from each other as they use
different universal map constructions. This also highlights the fact that any separation of VP and VNP

(in the bounded coefficient setting) cannot rely solely on the degree and circuit size of their equations,
but might need to look more carefully at the structure and properties of these equations. ♦

6.6 Discussion

In the context of proving circuit lower bounds, and in relation to the notion of algebraically
natural proofs, an interesting question that emerges from the results in this chapter is whether
the condition of “small coefficients” is necessary for efficiently constructible equations to
exist, especially for the class VP. While this question remains open for VP, a recent joint work
with Kumar, Ramya and Saptharishi [KRST20] shows that if the family {Permn} is 2nε

-hard,
then VNP does not have efficiently computable equations. This means that the additional
restriction on the coefficients is essentially vital for the existence of efficiently constructible
equations for the class VNP, and therefore provides strong evidence against the existence of
efficient equations for VNP.

In light of Theorem 6.8 and the result of [KRST20] for VNP, one could make a case that
equations for VP might also incur a super-polynomial blow up, without the restriction on
coefficients. On the other hand, it could also be argued that an analogue of [KRST20] may not
be true for VP, since their proof crucially uses the fact that VNP is “closed under exponential
sums”. In fact, the proofs in [KRST20] essentially algebraises the intuition that coefficient
vectors of polynomials in VNP “look random” to a polynomial in VP, provided that VNP was
exponentially more powerful than VP, using a result of Kabanets and Impagliazzo [KI04] (see
Theorem 1.23).

A crucial point to note however, is that the result in [KRST20] also shows that if VNP was
indeed exponentially more powerful than VP, then any algebraically natural proof for VP is
an algebraically natural proof that separates VP and VNP!

These varied perspectives on the recent results on efficient equations for polynomials in
VP with bounded coefficients highlight that the existence of such equations for VP in general
continues to remain an intriguing mystery.

108

7 | Future Directions

This thesis attempts to gain a better understanding of hitting sets for algebraic models. On the
one hand, we provide a new technique for constructing hitting sets and extend a previously
known construction to a strictly more powerful model, thus contributing to the set of tools
for PIT. On the other hand, our study about the consequences of non-trivial explicit hitting
sets provides some important insights into blackbox PIT, and also possibly into the question
of proving strong lower bounds.

Naturally, each of the works that we have seen lead to interesting open questions. We now
list some immediate directions for improving the works that have been discussed.

7.1 Questions about Structured Models

Extending the results in Chapter 3. An interesting open problem is whether we can give
non-trivial hitting sets for the class of non-commutative skew circuits. Lagarde, Limaye and
Srinivasan [LLS19] provide a white-box PIT in some restricted settings when the skew circuits
are somewhat closer to UPT (with some restriction on what sort of parse trees they can have)
but removing this restriction would be a great step forward.

Another issue is that the current construction of hitting sets for FewPT circuits (which
build on the work of Gurjar, Korwar, Saxena and Thierauf [GKST17]) incurs quasipolynomial
losses at two different places. The first is in the construction of the basis isolating weight as-
signment (BIWA), and we only know to construct that using quasipolynomially large weights.
The other is in a brute-force enumeration of all monomials of support O(log s). As a result,
even if at a later day we have a construction of a BIWA with polynomially large weights, this
proof would still only yield a quasipolynomially large hitting set for FewPT circuits. It would
be interesting to see if this brute-force enumeration could be circumvented.

Extending the results in Chapter 4. A natural question is whether we can exploit the struc-
ture of Newton polytopes of polynomials computed by other structured models, like ROABPs
or other well-understood models. For example, one can already see that Lemma 4.10 applies
to any measure that uses an operator that “acts linearly on the Newton polytope”, e.g. shifted
partials. It would therefore be interesting to see if any lower bounds (and hitting sets) based
on such measures can be extended or even reproved, using the method of Newton polytopes.

109

Another possible direction is to extend the results of Forbes, Ghosh and Saxena [FGS18]
to log-variate analogues of slightly more powerful models. Obtaining efficient hitting sets
for log-variate ROABPs is already known to imply efficient hitting sets for depth-3-powering
circuits in the general setting. A relatively easier, and famously interesting question is that
of constructing efficient hitting sets for depth-3-powering circuits in the general case. The
state-of-the-art for hitting sets of depth-3-powering circuits is nO(log log n), and this model is
arguably the best understood model for which we do not have explicit efficient hitting sets.

7.2 Questions about the General Models

Based on Chapter 5. A natural question in the spirit of the results from Chapter 5, and
those in the work of Agrawal, Ghosh and Saxena [AGS19] is “Can we hope to bootstrap lower
bounds”? In particular, can we hope to start from a mildly non-trivial lower bound for general
algebraic circuits (e.g. super-linear or just super-polynomial), and hope to amplify it to get a
stronger lower bound (super-polynomial or truly exponential respectively). In the context of
non-commutative algebraic circuits, Carmosino, Impagliazzo, Lovett and Mihajlin [CILM18]
recently showed such results, but no such result appears to be known for commutative alge-
braic circuits.

Another interesting open question is to see which of the bootstrapping results, or even
the results about the “hardness-randomness connections” can be interpreted to the setting of
whitebox PIT. However, such a result would perhaps require a more unified understanding of
whitebox PIT, which could then be used as an analogue for hitting sets.

Recent developments. A recent work of Guo, Kumar, Saptharishi and Solomon [GKSS19]
answers some natural questions that follow from the results in Chapter 5 over the fields of
characteristic zero. They show that (over characteristic zero fields) for any constant k, the
saving of a single point from the trivial hitting set (hitting sets of size (s+ 1)k− 1) for k-variate,
degree s circuits of size s for all large s, gives us hitting sets of size poly(s) for all degree s
circuits of size s. Moreover, they can get to their hypothesis by assuming a strong enough
lower bound against constant variate circuits. Their result uses a novel algebraic pseudoran-
dom generator (PRG) construction that yields an almost optimal conversion of “hardness to
randomness” in the relevant settings over fields of characteristic zero.

For fields of positive characteristic, the recent work of Andrews [And20] allows us to go
from strong enough constant variate lower bounds to the hypothesis of the main theorem in
Chapter 5. This means that such a lower bound would lead to almost-polynomial sized hitting
sets for multivariate algebraic circuits. Therefore, a natural and interesting open question here
is to design a strong algebraic PRG (analogous to [GKSS19]) that works over fields of positive
characteristic.

Based on Chapter 6. The most natural question here is to extend the results from Chapter 6
to the entire class VP over all fields. Our proofs crucially use the complexity of the coefficients

110

and it is not clear if the same ideas can be used for such an extension. As discussed towards
the end of the chapter, the recent work on equations for VNP ([KRST20]) only makes this
question more interesting, for both VP and VNP. A first line of attack could be to understand
the complexity of defining equations for constant-free versions of the classes VP and VNP,
namely VP0 and VNP0. Perhaps we can unconditionally say something interesting about the
equations for these restricted classes.

In general, proving non-trivial upper (and lower) bounds on the circuit complexity and
degree of equations of varieties associated with natural algebraic models is an interesting
question. In addition to proving such bounds for VP as mentioned above, it is also of great
interest to prove such bounds for other models, like formulas or algebraic branching pro-
grams.

111

Bibliography

[AB03] Manindra Agrawal and Somenath Biswas. Primality and identity testing via
Chinese remaindering. Journal of the ACM, 50(4):429–443, 2003. Preliminary ver-
sion in the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS
1999). (13), (17), (27), (43), (62), (63)

[AD08] Scott Aaronson and Andrew Drucker. Arithmetic natural proofs theory is sought.
Shtetl Optimized: Scott Aaronson’s Blog, 2008. (14), (87), (88), (89)

[AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-
Sets for ROABP and Sum of Set-Multilinear Circuits. SIAM Journal of Computing,
44(3):669–697, 2015. Pre-print available at arXiv:1406.7535. (13), (15), (16), (30),
(31), (33), (42), (43), (44), (62)

[Agr05] Manindra Agrawal. Proving Lower Bounds Via Pseudo-random Generators. In
Proceedings of the 25th International Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2005), pages 92–105, 2005. (9), (18), (71),
(72), (76)

[AGS19] Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. Bootstrapping variables
in algebraic circuits. Proceedings of the National Academy of Sciences, 116(17):8107–
8118, 2019. Proceedings of the 50th Annual ACM Symposium on Theory of
Computing (STOC 2018). eccc:TR18-035. (10), (17), (18), (69), (70), (71), (73),
(78), (110)

[AJMV98] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-Commutative Arith-
metic Circuits: Depth Reduction and Size Lower Bounds. Theoretical Computer
Science, 209(1-2):47–86, 1998. eccc:TR95-043. (8), (16), (32), (36), (37)

[And20] Robert Andrews. Algebraic Hardness versus Randomness in Low Characteristic.
In Proceedings of the 35th Annual Computational Complexity Conference (CCC 2020),
pages 37:1–37:32, 2020. arXiv:2005.10885. (10), (110)

[AR16] Vikraman Arvind and S. Raja. Some Lower Bound Results for Set-Multilinear
Arithmetic Computations. Chicago Journal of Theoretical Computer Science, 2016.
(30), (33), (36)

113

http://dx.doi.org/10.1145/792538.792540
http://dx.doi.org/10.1145/792538.792540
https://www.scottaaronson.com/blog/?p=336
http://dx.doi.org/10.1137/140975103
http://dx.doi.org/10.1137/140975103
http://arxiv.org/abs/1406.7535
http://dx.doi.org/10.1007/11590156_6
http://dx.doi.org/10.1073/pnas.1901272116
http://dx.doi.org/10.1073/pnas.1901272116
http://eccc.hpi-web.de/report/2018/035/
http://dx.doi.org/10.1016/S0304-3975(97)00227-2
http://dx.doi.org/10.1016/S0304-3975(97)00227-2
http://eccc.hpi-web.de/report/1995/043/
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.37
http://arxiv.org/abs/2005.10885
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html

[AS18] Vikraman Arvind and Srikanth Srinivasan. On the Hardness of the Noncommu-
tative Determinant. Computational Complexity, 27(1):1–29, 2018. Proceedings of
the 42nd Annual ACM Symposium on Theory of Computing (STOC 2010). (12)

[ASS13] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-
set for set-depth-∆ formulas. In Proceedings of the 45th Annual ACM Symposium
on Theory of Computing (STOC 2013), pages 321–330, 2013. eccc:TR12-113. (13),
(30), (61)

[ASSS16] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena.
Jacobian Hits Circuits: Hitting Sets, Lower Bounds for Depth-D Occur-k Formu-
las and Depth-3 Transcendence Degree-k Circuits. SIAM Journal of Computing,
45(4):1533–1562, 2016. Preliminary version in the 44th Annual ACM Symposium
on Theory of Computing (STOC 2012). arXiv:1111.0582. (13)

[AV08] Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth Four. In
Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2008), pages 67–75, 2008. eccc:TR08-062. (8)

[AvMV15] Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. Deterministic
polynomial identity tests for multilinear bounded-read formulae. Computational
Complexity, 24(4):695–776, 2015. Preliminary version in the 26th Annual IEEE
Conference on Computational Complexity (CCC 2011). (13)

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A New Barrier in Complexity
Theory. ACM Transactions on Computation Theory, 1(1), February 2009. Prelimi-
nary version in the 40th Annual ACM Symposium on Theory of Computing (STOC
2008). (87)

[Bar68] Erwin H Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian
elimination. Mathematics of computation, 22(103):565–578, 1968. (77)

[BCPS18] Anurag Bishnoi, Pete L. Clark, Aditya Potukuchi, and John R. Schmitt. On Ze-
ros of a Polynomial in a Finite Grid. Combinatorics, Probability and Computing,
27(3):310–333, 2018. (4)

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =?NP
Question. SIAM Journal on Computing, 4(4):431–442, 1975. (87)

[BIJL18] Markus Bläser, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov. Gener-
alized matrix completion and algebraic natural proofs. In Proceedings of the 50th
Annual ACM Symposium on Theory of Computing (STOC 2018), pages 1193–1206,
2018. (91), (93), (94)

114

http://dx.doi.org/10.1007/s00037-016-0148-5
http://dx.doi.org/10.1007/s00037-016-0148-5
http://dx.doi.org/10.1145/2488608.2488649
http://dx.doi.org/10.1145/2488608.2488649
http://eccc.hpi-web.de/report/2012/113/
http://dx.doi.org/10.1137/130910725
http://dx.doi.org/10.1137/130910725
http://arxiv.org/abs/1111.0582
http://dx.doi.org/10.1109/FOCS.2008.32
http://eccc.hpi-web.de/report/2008/062/
http://dx.doi.org/10.1007/s00037-015-0097-4
http://dx.doi.org/10.1007/s00037-015-0097-4
http://dx.doi.org/10.1145/1490270.1490272
http://dx.doi.org/10.1145/1490270.1490272
http://dx.doi.org/10.1017/S0963548317000566
http://dx.doi.org/10.1017/S0963548317000566
http://dx.doi.org/10.1137/0204037
http://dx.doi.org/10.1137/0204037
http://dx.doi.org/10.1145/3188745.3188832
http://dx.doi.org/10.1145/3188745.3188832

[BIL+19] Markus Bläser, Christian Ikenmeyer, Vladimir Lysikov, Anurag Pandey, and
Frank-Olaf Schreyer. Variety Membership Testing, Algebraic Natural Proofs, and
Geometric Complexity Theory. CoRR, abs/1911.02534, 2019. (93), (94)

[BLS16] Nikhil Balaji, Nutan Limaye, and Srikanth Srinivasan. An Almost Cubic Lower
Bound for ΣΠΣ Circuits Computing a Polynomial in VP. Electronic Colloquium
on Computational Complexity (ECCC), 23:143, 2016. (11)

[Bre74] Richard P. Brent. The Parallel Evaluation of General Arithmetic Expressions.
Journal of the ACM, 21(2):201–206, April 1974. (7)

[Bür00] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory, vol-
ume 7 of Algorithms and Computation in Mathematics. Springer, 2000. (77)

[Cho11] Timothy Y. Chow. Almost-natural proofs. Journal of Computer and System Sciences,
77(4):728–737, 2011. Preliminary version in the 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2008). (94)

[CILM18] Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin.
Hardness Amplification for Non-Commutative Arithmetic Circuits. In Proceed-
ings of the 33rd Annual Computational Complexity Conference (CCC 2018), pages
12:1–12:16, 2018. eccc:TR18-095. (70), (110)

[CKR+20] Prerona Chatterjee, Mrinal Kumar, C. Ramya, Ramprasad Saptharishi, and
Anamay Tengse. On the Existence of Algebraically Natural Proofs. CoRR,
abs/2004.14147, 2020. Pre-print available at arXiv:2004.14147. (18), (87)

[DL78] Richard A. DeMillo and Richard J. Lipton. A Probabilistic Remark on Algebraic
Program Testing. Information Processing Letters, 7(4):193–195, 1978. (4), (42), (69),
(81), (82)

[DMPY12] Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating
multilinear branching programs and formulas. In Proceedings of the 44th Sympo-
sium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 -
22, 2012, pages 615–624. ACM, 2012. Pre-print available at eccc:TR11-134. (12)

[DS13] Vladimir Ivanovich Danilov and Vyacheslav V Shokurov. Algebraic Geometry I:
Algebraic Curves, Algebraic Manifolds and Schemes, volume 23. Springer Science &
Business Media, 2013. (106)

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-Randomness Trade-
offs for Bounded Depth Arithmetic Circuits. SIAM J. Comput., 39(4):1279–1293,
2009. Preliminary version in the 40th Annual ACM Symposium on Theory of Com-
puting (STOC 2008). (10)

115

http://arxiv.org/abs/1911.02534
http://arxiv.org/abs/1911.02534
http://eccc.hpi-web.de/report/2016/143
http://eccc.hpi-web.de/report/2016/143
http://dx.doi.org/10.1145/321812.321815
http://dx.doi.org/10.1007/978-3-662-04179-6
http://dx.doi.org/10.1016/j.jcss.2010.06.017
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.12
http://eccc.hpi-web.de/report/2018/095/
https://arxiv.org/abs/2004.14147
http://arxiv.org/abs/2004.14147
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1145/2213977.2214034
http://dx.doi.org/10.1145/2213977.2214034
http://eccc.hpi-web.de/report/2011/134/
https://www.springer.com/gp/book/9783540519959
https://www.springer.com/gp/book/9783540519959
http://dx.doi.org/10.1137/080735850
http://dx.doi.org/10.1137/080735850

[EGOW18] Klim Efremenko, Ankit Garg, Rafael Oliveira, and Avi Wigderson. Barriers for
Rank Methods in Arithmetic Complexity. In 9th Innovations in Theoretical Com-
puter Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA,
volume 94 of LIPIcs, pages 1:1–1:19. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2018. (94)

[FGS18] Michael A. Forbes, Sumanta Ghosh, and Nitin Saxena. Towards Blackbox Iden-
tity Testing of Log-Variate Circuits. In Proceedings of the 45th International Col-
loquium on Automata, Languages and Programming (ICALP 2018), volume 107 of
LIPIcs, pages 54:1–54:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018. (13), (16), (17), (61), (62), (63), (66), (67), (110)

[FGT16] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect match-
ing is in quasi-NC. In Proceedings of the 48th Annual ACM Symposium on Theory of
Computing (STOC 2016), pages 754–763, 2016. eccc:TR15-177. (63), (67)

[FLMS15] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan.
Lower Bounds for Depth-4 Formulas Computing Iterated Matrix Multiplication.
SIAM Journal of Computing, 44(5):1173–1201, 2015. Preliminary version in the 46th
Annual ACM Symposium on Theory of Computing (STOC 2014). eccc:TR13-100. (11)

[For14] Michael Forbes. Polynomial Identity Testing of Read-Once Oblivious Algebraic
Branching Programs. PhD thesis, Massachusetts Institute of Technology, 2014.
(3), (17), (63), (65), (98), (103)

[FS12] Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank
recovery and compressed sensing. In Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
163–172. ACM, 2012. Pre-print available at eccc:TR11-147. (13), (61)

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-Time Identity Testing of
Non-commutative and Read-Once Oblivious Algebraic Branching Programs. In
Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2013), pages 243–252, 2013. Full version at arXiv:1209.2408. (11), (13),
(30), (33), (41), (53), (54), (61)

[FSS84] Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical systems theory, 17(1):13–27, 1984. (88)

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for
multilinear read-once algebraic branching programs, in any order. In Proceedings
of the 46th Annual ACM Symposium on Theory of Computing (STOC 2014), pages
867–875, 2014. (13), (16), (61)

116

http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.1
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.54
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.54
http://dx.doi.org/10.1145/2897518.2897564
http://dx.doi.org/10.1145/2897518.2897564
http://eccc.hpi-web.de/report/2015/177/
http://dx.doi.org/10.1137/140990280
http://eccc.hpi-web.de/report/2013/100/
http://hdl.handle.net/1721.1/89843
http://hdl.handle.net/1721.1/89843
http://dx.doi.org/10.1145/2213977.2213995
http://dx.doi.org/10.1145/2213977.2213995
http://eccc.hpi-web.de/report/2011/147/
http://dx.doi.org/10.1109/FOCS.2013.34
http://dx.doi.org/10.1109/FOCS.2013.34
http://arxiv.org/abs/1209.2408
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.1145/2591796.2591816
http://dx.doi.org/10.1145/2591796.2591816

[FSV18] Michael A. Forbes, Amir Shpilka, and Ben Lee Volk. Succinct Hitting Sets and
Barriers to Proving Lower Bounds for Algebraic Circuits. Theory of Computing,
14(1):1–45, 2018. Preliminary version in the 49th Annual ACM Symposium on
Theory of Computing (STOC 2017). arXiv:1701.05328. (14), (18), (87), (88), (89),
(90), (93), (95)

[GG20] Zeyu Guo and Rohit Gurjar. Improved Explicit Hitting-Sets for ROABPs. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference, volume
176 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. (13), (62)

[GKKS14] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Ap-
proaching the Chasm at Depth Four. Journal of the ACM, 61(6):33:1–33:16, 2014.
Preliminary version in the 28th Annual IEEE Conference on Computational Complex-
ity (CCC 2013). Pre-print available at eccc:TR12-098. (11)

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arith-
metic Circuits: A Chasm at Depth 3. SIAM Journal of Computing, 45(3):1064–1079,
2016. Preliminary version in the 54th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2013). eccc:TR13-026. (9)

[GKS17] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity Testing for Constant-
Width, and Commutative, Read-Once Oblivious ABPs. Theory of Computing,
13(1):1–21, 2017. Preliminary version in the 31st Annual Computational Complexity
Conference (CCC 2016). arXiv:1601.08031. (13), (15), (16), (31), (33), (46), (55),
(61)

[GKSS17] Joshua A. Grochow, Mrinal Kumar, Michael E. Saks, and Shubhangi Saraf. To-
wards an algebraic natural proofs barrier via polynomial identity testing. CoRR,
abs/1701.01717, 2017. Pre-print available at arXiv:1701.01717. (14), (18), (87),
(89), (90), (93), (95)

[GKSS19] Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon. Deran-
domization from Algebraic Hardness: Treading the Borders. In 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,
USA, November 9-12, 2019, pages 147–157. IEEE Computer Society, 2019. (10),
(110)

[GKST17] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Determinis-
tic Identity Testing for Sum of Read-once Oblivious Arithmetic Branching Pro-
grams. Computational Complexity, 26(4):835–880, 2017. Preliminary version in the
30th Annual Computational Complexity Conference (CCC 2015). arXiv:1411.7341.
(13), (15), (16), (30), (31), (33), (47), (48), (57), (109)

117

http://dx.doi.org/10.4086/toc.2018.v014a018
http://dx.doi.org/10.4086/toc.2018.v014a018
http://arxiv.org/abs/1701.05328
http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.4
http://dx.doi.org/10.1145/2629541
http://dx.doi.org/10.1145/2629541
http://eccc.hpi-web.de/report/2012/098/
http://dx.doi.org/10.1137/140957123
http://dx.doi.org/10.1137/140957123
http://eccc.hpi-web.de/report/2013/026/
http://dx.doi.org/10.4086/toc.2017.v013a002
http://dx.doi.org/10.4086/toc.2017.v013a002
http://arxiv.org/abs/1601.08031
http://arxiv.org/abs/1701.01717
http://arxiv.org/abs/1701.01717
http://arxiv.org/abs/1701.01717
http://dx.doi.org/10.1109/FOCS.2019.00018
http://dx.doi.org/10.1109/FOCS.2019.00018
http://dx.doi.org/10.1007/s00037-016-0141-z
http://dx.doi.org/10.1007/s00037-016-0141-z
http://dx.doi.org/10.1007/s00037-016-0141-z
http://arxiv.org/abs/1411.7341

[GMOW19] Ankit Garg, Visu Makam, Rafael Oliveira, and Avi Wigderson. More Barriers
for Rank Methods, via a "Numeric to Symbolic" Transfer. In 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,
USA, November 9-12, 2019, pages 824–844. IEEE Computer Society, 2019. (94)

[Gro13] Joshua Grochow, 2013. http://cstheory.stackexchange.com/questions/

19261/degree-restriction-for-polynomials-in-mathsfvp/19268#19268. (3)

[Gro15] Joshua A. Grochow. Unifying Known Lower Bounds via Geometric Complexity
Theory. Computational Complexity, 24(2):393–475, 2015. (14), (89), (90)

[GST20] Nikhil Gupta, Chandan Saha, and Bhargav Thankey. A Super-Quadratic Lower
Bound for Depth Four Arithmetic Circuits. In Proceedings of the 35th Annual Com-
putational Complexity Conference (CCC 2020), volume 169 of LIPIcs, pages 23:1–
23:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. Pre-print avail-
able at eccc:TR20-028. (11)

[GTV18] Rohit Gurjar, Thomas Thierauf, and Nisheeth K. Vishnoi. Isolating a Vertex via
Lattices: Polytopes with Totally Unimodular Faces. In Proceedings of the 45th
International Colloquium on Automata, Languages and Programming (ICALP 2018),
pages 74:1–74:14, 2018. (63), (67)

[Hås86] Johan Håstad. Almost Optimal Lower Bounds for Small Depth Circuits. In
Proceedings of the −1882th Annual ACM Symposium on Theory of Computing (STOC
86), page 6–20, New York, NY, USA, 1986. Association for Computing Machinery.
(88)

[Hog89] Jan P. Hogendijk. Sharaf al-Dı̄n T. ūsı̄ on the number of positive roots of cubic
equations. Historia Mathematica, 16(1):69 – 85, 1989. (75)

[HS80] Joos Heintz and Claus-Peter Schnorr. Testing Polynomials which Are Easy to
Compute (Extended Abstract). In Proceedings of the 12th Annual ACM Symposium
on Theory of Computing (STOC 1980), pages 262–272, 1980. (9), (18), (23), (71), (72),
(76), (91), (100)

[HY11a] Pavel Hrubeš and Amir Yehudayoff. Arithmetic Complexity in Ring Extensions.
Theory of Computing, 7(8):119–129, 2011. (106)

[HY11b] Pavel Hrubeš and Amir Yehudayoff. Homogeneous Formulas and Symmetric
Polynomials. Computational Complexity, 20(3):559–578, 2011. (12)

[HY16] Pavel Hrubeš and Amir Yehudayoff. On Isoperimetric Profiles and Computa-
tional Complexity. In Proceedings of the 43rd International Colloquium on Automata,
Languages and Programming (ICALP 2016), pages 89:1–89:12, 2016. eccc:TR15-164.
(33), (40), (41), (49), (50)

118

http://dx.doi.org/10.1109/FOCS.2019.00054
http://dx.doi.org/10.1109/FOCS.2019.00054
http://cstheory.stackexchange.com/questions/19261/degree-restriction-for-polynomials-in-mathsfvp/19268#19268
http://cstheory.stackexchange.com/questions/19261/degree-restriction-for-polynomials-in-mathsfvp/19268#19268
http://dx.doi.org/10.1007/s00037-015-0103-x
http://dx.doi.org/10.1007/s00037-015-0103-x
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.23
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.23
http://eccc.hpi-web.de/report/2020/028/
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.74
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.74
http://dx.doi.org/10.1145/12130.12132
http://dx.doi.org/10.1016/0315-0860(89)90099-2
http://dx.doi.org/10.1016/0315-0860(89)90099-2
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.4086/toc.2011.v007a008
http://dx.doi.org/10.1007/s00037-011-0007-3
http://dx.doi.org/10.1007/s00037-011-0007-3
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.89
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.89
http://eccc.hpi-web.de/report/2015/164/

[HY20] Pavel Hrubeš and Amir Yehudayoff. Shadows of Newton polytopes. 2020.
eccc:TR20-189. (63)

[Hya77] Laurent Hyafil. The Power of Commutativity. In Proceedings of the 18th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 1977), page 171–174,
USA, 1977. IEEE Computer Society. (2)

[Hya79] Laurent Hyafil. On the Parallel Evaluation of Multivariate Polynomials. SIAM
Journal of Computing, 8(2):120–123, 1979. Preliminary version in the 10th Annual
ACM Symposium on Theory of Computing (STOC 1978). (36)

[IK99] Anthony Iarrobino and Vassil Kanev. Power Sums, Gorenstein Algebras, and Deter-
minantal Loci. Springer-Verlag Berlin Heidelberg, 1999. (61)

[JS12] Maurice J. Jansen and Rahul Santhanam. Marginal hitting sets imply super-
polynomial lower bounds for permanent. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference (ICTS 2012), pages 496–506, 2012. (70),
(71), (74)

[Kal89] Erich Kaltofen. Factorization of Polynomials Given by Straight-Line Programs.
In Randomness and Computation, pages 375–412. JAI Press, 1989. (72), (77)

[Kay12] Neeraj Kayal. An exponential lower bound for the sum of powers of bounded
degree polynomials. In Electronic Colloquium on Computational Complexity
(ECCC)TR12-081, 2012. (11)

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing Polynomial Iden-
tity Tests Means Proving Circuit Lower Bounds. Computational Complexity, 13(1-
2):1–46, 2004. Preliminary version in the 35th Annual ACM Symposium on Theory
of Computing (STOC 2003). (9), (10), (18), (71), (72), (73), (77), (91), (108)

[KLSS17] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Ex-
ponential Lower Bound for Homogeneous Depth Four Arithmetic Circuits. vol-
ume 46, pages 307–335, 2017. Preliminary version in the 55th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2014). eccc:TR14-005. (11)

[Koi12] Pascal Koiran. Arithmetic Circuits: The Chasm at Depth Four Gets Wider. Theo-
retical Computer Science, 448:56–65, 2012. Pre-print available at arXiv:1006.4700.
(8)

[KPTT15] Pascal Koiran, Natacha Portier, Sébastien Tavenas, and Stéphan Thomassé. A
τ-Conjecture for Newton Polygons. Foundations of Computational Mathematics,
15:185–197, 2015. (63)

[KRST20] Mrinal Kumar, C. Ramya, Ramprasad Saptharishi, and Anamay Tengse. If VNP
is hard, then so are equations for it. CoRR, abs/2012.07056, 2020. Pre-print
available at arXiv:2012.07056. (19), (108), (111)

119

https://eccc.weizmann.ac.il/report/2020/189
http://eccc.hpi-web.de/report/2020/189/
http://dx.doi.org/10.1109/SFCS.1977.31
http://dx.doi.org/10.1137/0208010
http://dx.doi.org/10.1007/BFb0093426
http://dx.doi.org/10.1007/BFb0093426
http://dx.doi.org/10.1145/2090236.2090275
http://dx.doi.org/10.1145/2090236.2090275
https://www.semanticscholar.org/paper/Factorization-of-Polynomials-Given-by-Straight-Line-Kaltofen/6e3d3dd67593a84c91e4beac9c8e790850e059f5
http://eccc.hpi-web.de/report/2012/081/
http://eccc.hpi-web.de/report/2012/081/
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1137/151002423
http://dx.doi.org/10.1137/151002423
http://eccc.hpi-web.de/report/2014/005/
http://dx.doi.org/10.1016/j.tcs.2012.03.041
http://arxiv.org/abs/1006.4700
http://dx.doi.org/10.1007/s10208-014-9216-x
http://dx.doi.org/10.1007/s10208-014-9216-x
https://arxiv.org/abs/2012.07056
https://arxiv.org/abs/2012.07056
http://arxiv.org/abs/2012.07056

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of
multivariate polynomials. In Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing (STOC 2001), pages 216–223, 2001. (13), (17), (27), (62), (63)

[KS14] Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4
arithmetic circuits. In Proceedings of the 55th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2014), 2014. Pre-print available at eccc:TR14-045.
(11)

[KS19] Mrinal Kumar and Ramprasad Saptharishi. Hardness-Randomness Tradeoffs for
Algebraic Computation. Bulletin of EATCS, 1(129), 2019. (10)

[KSS14] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial
lower bound for regular arithmetic formulas. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing (STOC 2014), pages 146–153, 2014. Pre-
print available at eccc:TR13-091. (11)

[KST16] Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An Almost Cubic Lower
Bound for Depth Three Arithmetic Circuits. In 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,
volume 55 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016. (11)

[KST19] Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. Near-optimal Boot-
strapping of Hitting Sets for Algebraic Circuits. In Proceedings of the Thirtieth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, Cali-
fornia, USA, January 6-9, 2019, pages 639–646. SIAM, 2019. eccc:TR18-132. (10),
(17), (69)

[KV20] Mrinal Kumar and Ben Lee Volk. A Polynomial Degree Bound on Defining Equa-
tions of Non-rigid Matrices and Small Linear Circuits. CoRR, abs/2003.12938,
2020. Pre-print available at arXiv:2003.12938. (94)

[LLS19] Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower Bounds and
PIT for Non-commutative Arithmetic Circuits with Restricted Parse Trees. Com-
putational Complexity, 28(3):471–542, 2019. Preliminary version in the 42nd In-
ternationl Symposium on the Mathematical Foundations of Computer Science (MFCS
2017). eccc:TR17-077. (15), (29), (30), (46), (47), (109)

[LMP19] Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative
computations: lower bounds and polynomial identity testing. Chicago Journal of
Theoretical Computer Science, 2019. eccc:TR16-094. (12), (15), (16), (29), (30), (32),
(35), (50), (51), (59)

120

http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1109/FOCS.2014.46
http://dx.doi.org/10.1109/FOCS.2014.46
http://eccc.hpi-web.de/report/2014/045/
http://bulletin.eatcs.org/index.php/beatcs/article/view/591
http://bulletin.eatcs.org/index.php/beatcs/article/view/591
http://doi.acm.org/10.1145/2591796.2591847
http://doi.acm.org/10.1145/2591796.2591847
http://eccc.hpi-web.de/report/2013/091/
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.33
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.33
http://dx.doi.org/10.1137/1.9781611975482.40
http://dx.doi.org/10.1137/1.9781611975482.40
http://eccc.hpi-web.de/report/2018/132/
https://arxiv.org/abs/2003.12938
https://arxiv.org/abs/2003.12938
http://arxiv.org/abs/2003.12938
http://dx.doi.org/10.1007/s00037-018-0171-9
http://dx.doi.org/10.1007/s00037-018-0171-9
http://eccc.hpi-web.de/report/2017/077/
http://cjtcs.cs.uchicago.edu/articles/2019/2/contents.html
http://cjtcs.cs.uchicago.edu/articles/2019/2/contents.html
http://eccc.hpi-web.de/report/2016/094/

[LMS16] Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower Bounds
for Non-Commutative Skew Circuits. Theory of Computing, 12(1):1–38, 2016.
eccc:TR15-22. (29)

[MV97] Meena Mahajan and V. Vinay. A Combinatorial Algorithm for the Determinant.
In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1997), pages 730–738, 1997. Available on citeseer:10.1.1.31.1673. (7)

[MV17] Daniel Minahan and Ilya Volkovich. Complete Derandomization of Identity Test-
ing and Reconstruction of Read-Once Formulas. ACM Transactions on Computa-
tion Theory, 10(3):10:1–10:11, 2017. Preliminary version in the 32nd Annual Com-
putational Complexity Conference (CCC 2017). eccc:TR16-171. (13)

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy
as matrix inversion. Combinatorica, 7(1):105–113, 1987. Preliminary version in the
19th Annual ACM Symposium on Theory of Computing (STOC 1987). (62)

[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing (STOC 1991), pages
410–418, 1991. Available on citeseer:10.1.1.17.5067. (12), (13), (16), (29), (30),
(32), (59)

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Com-
binatorica, 12(4):449–461, 1992. (30)

[NW94] Noam Nisan and Avi Wigderson. Hardness vs Randomness. Journal of Computer
and System Sciences, 49(2):149–167, 1994. Available on citeseer:10.1.1.83.8416.
(9), (75)

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via
partial derivatives. Computational Complexity, 6(3):217–234, 1997. Available on
citeseer:10.1.1.90.2644. (10), (14), (65)

[Ore22] Øystein Ore. Über höhere Kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15,
1922. (4), (42), (69), (81), (82)

[OSV16] Rafael Oliveira, Amir Shpilka, and Ben Lee Volk. Subexponential Size Hit-
ting Sets for Bounded Depth Multilinear Formulas. Computational Complexity,
25(2):455–505, 2016. Preliminary version in the 30th Annual Computational Com-
plexity Conference (CCC 2015). arXiv:1411.7492. (13)

[PS82] Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, 1982. (64)

[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits
over a complete basis with logical addition. Mathematical notes of the Academy of
Sciences of the USSR, 41(4):333–338, 1987. (88)

121

http://dx.doi.org/10.4086/toc.2016.v012a012
http://dx.doi.org/10.4086/toc.2016.v012a012
http://eccc.hpi-web.de/report/2015/22/
http://dx.doi.org/10.1.1.31.1673
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1673
http://dx.doi.org/10.1145/3196836
http://dx.doi.org/10.1145/3196836
http://eccc.hpi-web.de/report/2016/171/
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1145/103418.103462
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.5067
http://dx.doi.org/10.1007/BF01305237
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.8416
http://dx.doi.org/10.1007/BF01294256
http://dx.doi.org/10.1007/BF01294256
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.2644
http://dx.doi.org/10.1007/s00037-016-0131-1
http://dx.doi.org/10.1007/s00037-016-0131-1
http://arxiv.org/abs/1411.7492
https://dl.acm.org/doi/book/10.5555/31027
https://dl.acm.org/doi/book/10.5555/31027
http://dx.doi.org/10.1007/BF01137685
http://dx.doi.org/10.1007/BF01137685

[Raz06] Ran Raz. Separation of Multilinear Circuit and Formula Size. Theory of Com-
puting, 2(1):121–135, 2006. Preliminary version in the 45th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2004). Pre-print available at
eccc:TR04-042. (12)

[Raz09] Ran Raz. Multi-Linear Formulas for Permanent and Determinant are of Super-
Polynomial Size. Journal of the ACM, 56(2), 2009. Preliminary version in the 36th
Annual ACM Symposium on Theory of Computing (STOC 2004). Pre-print available
at eccc:TR03-067. (12)

[Raz10] Ran Raz. Elusive Functions and Lower Bounds for Arithmetic Circuits. Theory of
Computing, 6(1):135–177, 2010. (97)

[RR97] Alexander A. Razborov and Steven Rudich. Natural Proofs. Journal of Computer
and System Sciences, 55(1):24–35, 1997. Preliminary version in the 26th Annual
ACM Symposium on Theory of Computing (STOC 1994). (14), (87), (88), (89), (94)

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-
commutative models. Computational Complexity, 14(1):1–19, 2005. Preliminary
version in the 19th Annual IEEE Conference on Computational Complexity (CCC
2004). (30)

[RS11] Kristian Ranestad and Frank-Olaf Schreyer. On the rank of a symmetric form.
Journal of Algebra, 346(1):340–342, 2011. (11), (61)

[RY09] Ran Raz and Amir Yehudayoff. Lower Bounds and Separations for Constant
Depth Multilinear Circuits. Computational Complexity, 18(2):171–207, 2009. Pre-
liminary version in the 23rd Annual IEEE Conference on Computational Complexity
(CCC 2008). Pre-print available at eccc:TR08-006. (12)

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complex-
ity. Github survey, 2015. (97)

[Sax08] Nitin Saxena. Diagonal Circuit Identity Testing and Lower Bounds. In Proceed-
ings of the 35th International Colloquium on Automata, Languages and Programming
(ICALP 2008), pages 60–71, 2008. Pre-print available at eccc:TR07-124. (11), (61)

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial
Identities. Journal of the ACM, 27(4):701–717, 1980. (4), (42), (69), (81), (82)

[Sie14] Carl L Siegel. Über einige anwendungen diophantischer approximationen. In
On Some Applications of Diophantine Approximations, pages 81–138. Springer, 2014.
(19), (96), (102)

[Smo87] Roman Smolensky. Algebraic Methods in the Theory of Lower Bounds for
Boolean Circuit Complexity. In Proceedings of the 19th Annual ACM Symposium on
Theory of Computing (STOC 1987), pages 77–82, 1987. (88)

122

http://dx.doi.org/10.4086/toc.2006.v002a006
http://eccc.hpi-web.de/report/2004/042/
http://dx.doi.org/10.1145/1502793.1502797
http://dx.doi.org/10.1145/1502793.1502797
http://eccc.hpi-web.de/report/2003/067/
http://dx.doi.org/10.4086/toc.2010.v006a007
http://dx.doi.org/10.1006/jcss.1997.1494
http://dx.doi.org/10.1007/s00037-005-0188-8
http://dx.doi.org/10.1007/s00037-005-0188-8
https://doi.org/10.1016/j.jalgebra.2011.07.032
http://dx.doi.org/10.1007/s00037-009-0270-8
http://dx.doi.org/10.1007/s00037-009-0270-8
http://eccc.hpi-web.de/report/2008/006/
https://github.com/dasarpmar/lowerbounds-survey/releases/
https://github.com/dasarpmar/lowerbounds-survey/releases/
http://dx.doi.org/10.1007/978-3-540-70575-8_6
http://eccc.hpi-web.de/report/2007/124/
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1007/978-88-7642-520-2_2
http://dx.doi.org/10.1145/28395.28404
http://dx.doi.org/10.1145/28395.28404

[SS10] Nitin Saxena and C. Seshadhri. From Sylvester-Gallai Configurations to Rank
Bounds: Improved Black-Box Identity Test for Depth-3 Circuits. In Proceedings of
the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010),
pages 21–29, 2010. arXiv:1002.0145. (13)

[ST18] Ramprasad Saptharishi and Anamay Tengse. Quasipolynomial Hitting Sets for
Circuits with Restricted Parse Trees. In Proceedings of the 38th International Confer-
ence on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2018), volume 122 of LIPIcs, pages 6:1–6:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. eccc:TR17-135. (15), (29)

[ST20] Amit Sinhababu and Thomas Thierauf. Factorization of Polynomials Given By
Arithmetic Branching Programs. In 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169
of LIPIcs, pages 33:1–33:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. Pre-print available at eccc:TR20-077. (10), (73)

[Str69] V. Strassen. Gaussian Elimination is not Optimal. Numerische Mathematik,
13(3):354–356, 1969. (2)

[Str73] Volker Strassen. Die Berechnungskomplexität Von Elementarsymmetrischen
Funktionen Und Von Interpolationskoeffizienten. Numerische Mathematik,
20(3):238–251, 1973. (2)

[SV15] Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. Com-
putational Complexity, 24(3):477–532, 2015. Preliminary version in the 40th Annual
ACM Symposium on Theory of Computing (STOC 2008). (48), (61)

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of
characteristic zero. Computational Complexity, 10(1):1–27, 2001. Preliminary ver-
sion in the 14th Annual IEEE Conference on Computational Complexity (CCC 1999).
eccc:TR99-023. (10)

[Tav15] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf.
Comput., 240:2–11, 2015. Preliminary version in the 38th Internationl Symposium on
the Mathematical Foundations of Computer Science (MFCS 2013). arXiv:1304.5777.
(8)

[Val79] Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the 11th
Annual ACM Symposium on Theory of Computing (STOC 1979), pages 249–261,
1979. (2), (3), (7)

[Val82] Leslie G. Valiant. Reducibility by algebraic projections. L’Enseignement Mathema-
tique: Logic and Algorithmic, Geneva, 2:365–380, 1982. (3)

123

http://dx.doi.org/10.1109/FOCS.2010.9
http://dx.doi.org/10.1109/FOCS.2010.9
http://arxiv.org/abs/1002.0145
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.6
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.6
http://eccc.hpi-web.de/report/2017/135/
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.33
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.33
http://eccc.hpi-web.de/report/2020/077/
https://doi.org/10.1007/BF02165411
http://dx.doi.org/10.1007/BF01436566
http://dx.doi.org/10.1007/BF01436566
http://dx.doi.org/10.1007/s00037-015-0105-8
http://dx.doi.org/10.1007/PL00001609
http://dx.doi.org/10.1007/PL00001609
http://eccc.hpi-web.de/report/1999/023/
http://dx.doi.org/10.1016/j.ic.2014.09.004
http://arxiv.org/abs/1304.5777
http://dx.doi.org/10.1145/800135.804419

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel
Computation of Polynomials Using Few Processors. SIAM Journal of Computing,
12(4):641–644, 1983. Preliminary version in the 6th Internationl Symposium on the
Mathematical Foundations of Computer Science (MFCS 1981). (8), (16), (32), (36),
(37), (97)

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic
and Algebraic Computation, EUROSAM ’79, An International Symposiumon Symbolic
and Algebraic Computation, volume 72 of Lecture Notes in Computer Science, pages
216–226. Springer, 1979. (4), (42), (69), (81), (82)

124

http://dx.doi.org/10.1137/0212043
http://dx.doi.org/10.1137/0212043
http://dx.doi.org/10.1007/3-540-09519-5_73

	Introduction
	Easy and Hard Polynomials
	Polynomial Identity Testing
	Hitting Sets

	Background
	Determinants and Permanents
	Depth Reduction Results
	Hardness - Randomness Connections

	Current Status
	Lower Bounds
	Hitting Sets
	Analysing Lower Bound Techniques

	Contributions of the thesis
	Hitting Sets for UPT circuits
	Isolating Log-variate Depth-3-Powering Circuits
	Bootstrapping Hitting Sets
	Algebraically Natural Proofs

	Organization of the Thesis

	Preliminaries
	Basic Notation
	Computing Polynomials
	Some Important Polynomial Families

	Hitting Set Basics
	Hitting Sets and Hitting Set Generators
	Designing Hitting Set Generators

	Hitting Sets for Circuits with Restricted Parse Trees
	Non-commutative and Unique Parse Tree (UPT) circuits
	Polynomial identity testing
	Results in this chapter
	Proof ideas

	Background
	Basic definitions
	Basic lemmas

	Depth reduction for UPT circuits
	UPT infixion-circuits
	UPT circuits of constant width

	Separating ROABPs and UPT circuits
	The polynomial

	Hitting sets for non-commutative models
	Preliminaries for PIT
	Hitting sets for UPT set-multilinear circuits
	Poly-sized hitting sets for constant width UPT circuits

	FewPT circuits
	Preliminaries

	Separating ABPs from UPT circuits
	Exponential lower bound under any shuffling
	The polynomial
	The lower bound

	Hitting sets for UPT circuits
	Commutative analogue of UPT circuits
	Constant width UPT circuits

	Hitting sets for FewPT circuits
	Finer analysis of constant width UPT circuits
	Constant width ABPs
	General non-commutative ABPs and formulas

	Isolating Log-variate Polynomials
	Introduction
	Isolating Weight Assignments
	Results in this chapter
	Proof Idea
	Related work

	Background
	Isolating Family for Structured Log-variate Polynomials
	Discussion

	Near-optimal Bootstrapping of Hitting Sets for Algebraic Models
	Bootstrapping of Hitting Sets
	Proof overview

	Preliminaries
	Combinatorial designs
	Hardness-randomness connections

	Bootstrapping Hitting Sets
	Proofs of the bootstrapping lemmas

	Algorithm for generating the hitting set

	On the Existence of Algebraically Natural Proofs
	Introduction
	The Natural Proofs framework of Razborov and Rudich
	Algebraically Natural Proofs
	Results in this chapter
	Discussion and relations to prior work
	An overview of the proof

	Some Background
	Constructible equations for VP over small finite fields
	Constructible equations for VP with coefficients in {1,0,-1}
	Equations for VNP
	VNP over Small Finite Fields
	Polynomials in VNP with Small Integer Coefficients

	Discussion

	Future Directions
	Questions about Structured Models
	Questions about the General Models

