# SUMS OF POWERS OF LINEAR FORMS.

# PARTIAL DERIVATIVES, AND COMMUTING MATRICES

# ANAMAY TENGSE

### (UNIVERSITY OF HAIFA)

#### BASED ON A JOINT WORK WITH C. RAMYA (IMSC, CHENNAI)

#### WACT 2023



# ALGEBRAIC BRANCHING PROGRAMS $f(x_1,...,x_n) =$ M<sub>2</sub> M<sub>1</sub> -. . . -yxy ુ મ×મ



## ALGEBRAIC BRANCHING PROGRAMS $f(\chi_1, \ldots, \chi_n)$ $M_{2}(z_{2})$ $M_1(n_1)$ Ξ .. -yxy ુ મ×મ deg-d univariates deg-d univariates in $\mathcal{A}_2$ in d1









#### ROABPS : ORDER MATTERS



## Any ROABP for $FR(\bar{x}, \bar{y})$ in $(n_1, \dots, n_n, y_1, \dots, y_n)$ has width $2^n$ .



### ROABPS : ORDER MATTERS



# Any ROABP for $FR(\bar{x}, \bar{y})$ in $(n_1, \dots, n_n, y_1, \dots, y_n)$ has width $2^n$ .











# RDABPs in every order



## RDABPs in every order



## Diagonal ROABPs : all coeff matrices are diagonal



## ROABPs in every order

#### Commutative ROABPs: all coeff matrices commute

with each other

## Diagonal ROABPs : all coeff matrices are diagonal



### RDABPs in every order

#### Commutative ROABPs: all coeff matrices commute

with each other



# Diagonal ROABPs : all coeff matrices are diagonal



### ROABPs in every order

coeff matrices commute Commutative ROABPs : all with each other Diagonal ROABPs : all coeff matrices are diagonal Q. Suppose f(a,..., an) has a width-4 commutative ROABP. How large should a diagonal ROABP for f be? (I) poly(n,d,w) (I) 'Superpoly''(n,d,w)



| , | You | WON'T | BELI | EVE | W | HAT | HAF | PENS | NEXT | 121 |
|---|-----|-------|------|-----|---|-----|-----|------|------|-----|
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |
|   |     |       |      |     |   |     |     |      |      |     |

#### ..., YOU WON'T BELIEVE WHAT HAPPENS NEXT !?!

Theorem [Ramya, T.]

Super-polynomial separation between

commutative - ROABPs and diagonal - ROABPs

Super-polynomial separation between

Maxing Hank and dimension-of-partial-derivatives.



#### MARING RANK AND PARTIAL DERIVATIVES

WR(f): smallest & s.t.  $f(\bar{z}) = \sum_{i=1}^{8} B_i \cdot l_i(\bar{z})^d$ 

#### MARING RANK AND PARTIAL DERIVATIVES

WR(f): smallest & s.t.  $f(\bar{x}) = \sum_{i=1}^{s} B_i \cdot l_i(\bar{x})^d$ 

 $-\frac{\partial l(\bar{z})^{d}}{\partial x_{i}} = \chi_{j} \cdot l(\bar{z})^{d-1}; \quad \text{span} \left\{ \frac{\partial l_{i}^{d}}{\partial x_{1}}, \dots, \frac{\partial l_{i}^{d}}{\partial x_{n}} \right\} = \text{span} \left\{ l_{i}^{d-1} \right\}$ 

 $\therefore \text{ Span } \left\{ \begin{array}{c} 2^{|m|} d \\ \overline{2^{|m|}} \\ \overline{2^{|m|}}$ 



#### MARING RANK AND PARTIAL DERIVATIVES





 $\therefore \text{ Span } \left\{ \begin{array}{c} 2^{|m|} d \\ \frac{3^{|m|}}{3^{|m|}} i : \text{ monomial } m \right\} = \text{ Span } \left\{ l_i^d, l_j^d, \ldots, l_i, 1 \right\}$ 

Theorem [Nisan-Wigderson 95]

Q. Is the converse true (up to poly. factors)?





#### PROOF IDEAS-I

 $\begin{bmatrix} \text{Ben-DM} \end{bmatrix}: \text{ coeff}_{t^{d}} \left( (1+t_{n})(1+t_{n}) - (1+t_{n}) \right) = \sum_{\substack{s \in [n]}} \begin{bmatrix} TT & a_{j} \end{bmatrix} = E \text{ Symm,} d$ 

|  |  |  |  |  |  |  |  |  |  |  |  | 1    | . 1 |     |
|--|--|--|--|--|--|--|--|--|--|--|--|------|-----|-----|
|  |  |  |  |  |  |  |  |  |  |  |  |      | SI  | = ( |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  | -    |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  | <br> |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |
|  |  |  |  |  |  |  |  |  |  |  |  |      |     |     |



![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_28_Figure_0.jpeg)

diagonal ROABP of width poly(n, WR(h))

# LET US STUDY ROABPs !!!

\* Lower bounds for commutative, diagonal ROABPs (that do not extend to 'eveny-order-ROABPs'). \* PIT fon diagonal on commutative ROABPS (different from [AGKS'15], [GKS'16]). 4 for n~ Ollog (dri), implications to ENZ.

![](_page_29_Figure_2.jpeg)

![](_page_30_Figure_0.jpeg)