
Read-once Algebraic Branching Programs

and Commuting Matrices

And why one should attend random talks

Anamay Tengse [with C Ramya (IMSc) and Vishwas Bhargava (Waterloo)]

Reichman University (IDC Herzliya)



An interesting question



Sums of powers of linear forms

� [Waring, 1770]: Let k ∈ N, is there always a finite g(k) such that any positive integer is

a sum of k th powers of at most g(k) many integers?

E.g. g(2) = 4, g(3) = 9, g(4) = 19.

[Hilbert 1909]: Yes.

� Polynomials: For n, d ∈ N, is there a finite W (n, d) such that any n-variate, degree-d

polynomial is a linear combination of powers of W (n, d) linear polynomials?

Observe. Enough to show this for monomials.

[Fischer 1994, CCG 2012]: Yes, monomials are sums of ≤ dn powers.

� Waring rank: WR(f ) = smallest r so that f is a sum of r powers of linear polynomials.

Q. Are there explicit polynomials with Waring rank exp(n)?
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Partial Derivatives

[Nisan & Wigderson 1996]:

� For g(x) = ℓ(x)d , rk(Mg ) ≤ (d + 1).

� WR(f ) = r ⇒ rk(Mf ) ≤ r · (d + 1).

o WR(x1x2 · · · xn) = 2Θ(n).

Partial Derivative Matrix for f

Mf =

m

m′

coefficient of m′ in ∂mf

Question. Let DPD(f ) = rk(Mf ). If DPD(f ) ≤ s, is WR(f ) ≤ poly(n, s)?
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Waring rank vs dimension of partial derivatives

� No known candidates for separating DPD and WR

except,

Detn(x) := det


x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n
...

...
. . .

...

xn,1 xn,2 · · · xn,n



o DPD(Detn) ≤ 22n, and WR(Detn) ≤ 2O(n log n)

Question. Any other property separating WR and DPD?
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Read-once Branching Programs



Waring rank and ROABPs

[Saxena 2008]: For any a ∈ Cn, (a1x1 + a2x2 + · · ·+ anxn)
d can be expressed as a sum of

O(nd) products of univariate polynomials.

(a1x1 + · · ·+ anxn)
d =

∑
i∈[t]

gi,1(x1) · gi,2(x2) · · · gi,n(xn), for t ≤ n(d + 1).

Corollary. If WR(f ) = r , then f is also a sum of w = O(ndr) products of univariates.

Question. What happens when DPD(f ) = r?
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Sums of products of univariates, and ROABPs

w∑
i=1

 n∏
j=1

gi,j(xj)

 →

ROABP of width w .

Read-once,

Oblivious ABP.

s

g1,1(x1)

g2,1(x1)

...

gw ,1(x1)

. . .

g1,n(xn)

g2,n(xn)

...

gw ,n(xn)

t

1̄⊺

 D1(x1)

 · · ·

 Dn(xn)

 1̄

Here, Di (xi ) is diagonal w × w matrix with univariates in xi .
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ū⊺

 M1(x1)

 · · ·

 Mn(xn)

 v̄

Here, Mi (xi ) is any w × w matrix with univariates in xi .



Sums of products of univariates, and ROABPs

w∑
i=1

 n∏
j=1

gi,j(xj)

 →

ROABP of width w .

Read-once,

Oblivious ABP.

s

g1,1(x1)

g2,1(x1)

...

gw ,1(x1)

. . .

g1,n(xn)

g2,n(xn)

...

gw ,n(xn)

t

ū⊺
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ROABPs and partial derivatives

� ROABP of width w , for f : f (x) = ū⊺ ·M1(x1) ·M2(x2) · · ·Mn(xn) · v̄ ,
where Mi (xi )s are w × w matrices with univariates in xi , ū, v̄ ∈ Cw .

� Order of the variables:

Consider g(x , y) = (x1 + y1)(x2 + y2) · · · (xn + yn).

Width required for g in the order (x1, y1, x2, y2, . . . , xn, yn), is 2.

But in the order (x1, x2, . . . , xn, y1, y2, . . . , yn), g requires width exp(n).

� Fact. If DPD(f ) ≤ s, then f has an ROABP of width s in every order.

Note. Any sum of products of univariates is an ROABP in every order, but not vice versa.

Question. What can ROABPs tell us about the DPD vs WR question?
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Our work



Family Portrait (old)

∃ROABP(f ) = poly

∀ROABP(f ) = poly

diagRO(f ) = poly

WR(f ) = poly

DPD(f ) = poly

commRO(f ) = poly

̸=

̸=

?
=

̸=
?
=

?
=

?
=

o ∃ROABP(f ) = poly

small ROABPs in some order

o ∀ROABP(f ) = poly

small ROABPs in every order

o diagRO(f ) = poly

small diagonal ROABPs

o WR(f ) = poly

small Waring rank

o DPD(f ) = poly

small dimension of partials
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WR(f ) = poly

DPD(f ) = poly

commRO(f ) = poly

̸=

̸=

?
=

̸=

?
=

?
=

Commutative ROABPs

ROABPs with matrices that pairwise

commute with each other.

o commRO(f ) = poly

small commutative ROABPs



Family Portrait (new)

∃ROABP(f ) = poly

∀ROABP(f ) = poly

diagRO(f ) = poly

WR(f ) = poly

commRO(f ) = poly

DPD(f ) = poly

̸=

̸=
?
=

?
=

?
=

⇒

̸=

Theorem 1 [Ramya-T. 2022]

If ∀g ,WR(g) ≤ (n · DPD(g))a, then
∀f , diagRO(f ) ≤ O(n · (commRO(f ))10a).

Theorem 2 [Bhargava-T. 2024]

For any polynomial f ,

commRO(f ) ≤ O(deg(f )2 · DPD(f )).
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Key proof ideas



Ben-Or’s trick

Elementary Symmetric Polynomial:

ESymd
n(x1, . . . , xn) =

∑
1≤i1<i2<···<id≤n

xi1xi2xi3 · · · xid

[Ben-Or]: ESymd
n(x) = coefftd ((1 + tx1)(1 + tx2) · · · (1 + txn)). Thus,

ESymd
n(x) =

∑
j∈[n+1]

βj · (1 + jx1)(1 + jx2) · · · (1 + jxn), for some β1, . . . , βn+1 ∈ C

Corollary. DiagRO for ESymd
n of width O(n) for any d .
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CommRO for ESym

ESymd
n(x) = coefftd ((1 + tx1)(1 + tx2) · · · (1 + txn))

Let A =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0


(d+1)×(d+1)

n∏
i=1

(I + xiA) =

[
1 ESym1

n ESym2
n · · · ESymd

n
...

...
...

. . .
...

]

� ESymd
n(x) = (

∏
i (I + xiA) )1,d+1

o CommRO of width O(d)

� Setting t = A is like

going modulo td+1

o Minimal polynomial of A: td+1
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(Very) High Level Overview of Theorem 1

(1) ESymd
n(x) = coefftd ((1 + tx1) · · · (1 + txn))

(2) ( (I + x1A) · · · (I + xnA) )1,d+1 (3)
∑

j∈[n+1]

βj · (1 + jx1) · · · (1 + jxn)

Proof sketch

� (2) — (1) with poly(w) blow-up for any commRO of width w [MMM93,MS95]

� (1) — (3) with poly(n,w) blow-up, if WR(g) ≤ poly(n,DPD(g)) for all g [Pratt19]
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The universal trick (Theorem 2)

� Finding polynomials to quotient by (like td+1)

o We say g ⊥ f if
∑

m(e1!e2! · · · en!) · coeffm(g) · coeffm(f ) = 0, where m = xe1
1 xe2

2 · · · xen
n .

o Define f ⊥ := ⟨{g(x) : g ⊥ f }⟩.

� Choosing the right polynomial (like (1 + tx1) · · · (1 + txn))

o Define G(t, x) = g(t1, x1) · g(t2, x2) · · · · · g(tn, xn), where for each i ,

g(ti , xi ) = 1 + ti · xi +
1

2!
· t2i · x2

i + · · ·+ 1

d!
· tdi · xd

i

� Picking the matrices (like A for td+1)

o Fact. ∃A1, . . . ,An ∈ Cw×w corresponding to f ⊥, where w = DPD(f ).

o ∃v̄ such that f (x) = firstRow(G(A1, . . . ,An, x1, . . . , xn)) · v̄ .
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Concluding remarks



Open questions

∃ROABP(f ) = poly

∀ROABP(f ) = poly

diagRO(f ) = poly

WR(f ) = poly

commRO(f ) = poly

DPD(f ) = poly

̸=

̸=?
=

?
=

?
=

⇒

̸=

� Resolve any of the
?
= questions.

� Is the converse of theorem 1 true?



Why we could prove these results?

� Back in 2019, I was visiting Mrinal Kumar at IITB, there was a talk in the EE department’s

Thursday Theory Lunch, by Debosattam Paul on solving PDEs using some eigenvalues.

� I decided to attend to have free food learn about eigenvalues.

� The talk mentioned a work of Möller and Stetter from 1995, which talks about “common

eigenvalues” of commuting matrices.

� Correspondence [MMM93,MS95] between commuting matrices and quotienting by

polynomials is the core ingredient of our proofs.

� Moral of the story. If you’re not busy, attend the talk.
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� The talk mentioned a work of Möller and Stetter from 1995, which talks about “common

eigenvalues” of commuting matrices.

� Correspondence [MMM93,MS95] between commuting matrices and quotienting by

polynomials is the core ingredient of our proofs.

� Moral of the story. If you’re not busy, attend the talk.



Why we could prove these results?

� Back in 2019, I was visiting Mrinal Kumar at IITB, there was a talk in the EE department’s

Thursday Theory Lunch, by Debosattam Paul on solving PDEs using some eigenvalues.

� I decided to attend to have free food learn about eigenvalues.
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Thank you!
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