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Known. Randomized, poly(n, d, s)-time algorithm for circuits.

Open. Deterministic algorithm for circuits, making fewer than d" queries.
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Reconstruction (“Proper-Learning”) of Polynomials

(n vars, d deg, size s) f(@)
l — (ul,la-'wal.n) —
Reconstruction | «—  f(a;) ———
Algorithm
Re - ((1’7‘,17 0oog a’r,n,) —
l — f@) ——
C € C computing f(T), of size s 1 Z2 Tp—1 T

Re exists: “The class C can be proper-learnt in <complexity-of-R>"



The Question

Read-once Oblivious ABPs
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Algebraic Branching Programs (ABPs)

Label on each edge: An linear polynomial in {z1,22,...,2,}

Polynomial computed by the path p = wt(p): Product of the edge labels on p

Polynomial computed by the ABP:  f4(Z) =>_ wt(p)  (sum over s to ¢ paths)

Size of the ABP: total number of vertices (9 in the example)
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ROABP (n-variate, degree-d, width-w)
e On each s to t path, every variable is read-once, oblivious of the others.
e The i'" layer of edges only has degree-d univariates in x; as labels.

e Width of the ROABP: Maximum number of vertices in any layer.



Read-once Oblivious ABPs
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ROABP (n-variate, degree-d, width-w, order o)
e On each s to t path, every variable is read-once, oblivious of the others.
e The i*" layer of edges only has degree-d univariates in Ty(i) as labels.
e Width of the ROABP: Maximum number of vertices in any layer.
e Order of the ROABP: permutation o € s,, in which the variables are read.



ROABPs and Order

Example. Width depends on Order
F(z,7) has a width 2 ROABP in the order (1,1, %2, Y2, - -, Tn,Yn),
but requires width 2 in the order (21,9, ..., Tn, Y1, Y2, - Yn)-

F@,9) = (z1 + 1) (22 + y2) - (Tn + yn)
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State of the art for ROABPs

e Lower Bounds. Easy, due to an explicit characterization (Nisan 1991) to compute the

optimal width in each layer exactly.

e ldentity Testing.

e Algorithm can access circuit (“Whitebox"): Deterministic time poly(n, d, w).
e Algorithm can only query (“Blackbox"): Deterministic time (ndw)®°s™.

e Reconstruction. Randomized polytime, and deterministic time (ndw)©(°8™),
when the algorithm is given the order.

Q. What is the complexity of finding the order?
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Order Finding Problem

Given parameters n,d,w € N and a polynomial f(%), find some order o in which f has an
ROABP of width at most w.

Note. Using reconstruction, we can check if the given w is correct. So we can assume WLOG
that f has an ROABP of width w in some order, hence the following is a simpler problem.

Order Finding Problem (Decision)

Given an n-variate, degree-d polynomial (%), and a parameter w € N, determine if f has an
ROABP of width at most w in some order o.
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Our Results

NP hardness (Algebraic Circuit Minimization)
Order finding problem is NP-hard, even when f is given as an algebraic circuit.

NP hardness for constant degree (Algebraic MCSP)
For any constant A > 6, order finding for n-variate, degree-A polynomials is NP-hard,
even when f is given in the dense representation (algebraic analogue of a truth table).

Average-case algorithm
Randomized order-finding algorithm that runs in polytime for a random/generic ROABP.
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Linear Arrangement of Graphs

Goal. Show that finding an optimal order is hard.

G CutWidth of G for (5,2,3,1,4) is 3

N

(» (5) 5 2 1 3 1 4

CutWidth(G) = neusn CutWidth,(G) := rreusn (m?o]( #edges(o[l :i],o[i + 1 : n))
gESR gESn \ €[N

)



Reduction from CutWidth
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Reduction from CutWidth

CutWidth(G) = min (max #edges(o[l :i],0li +1: n]))

o€Sn \i€[n]

ROABPwidth(f) := min (max # {vertices in layer z})

oc€ESn i€[n]

Theorem (implied by [Nisan 1991])
For any (), the optimal ROABP for f in the order o has exactly w; = rk (M](f’i)) vertices

in layer 4, where M}U’i) is as follows, for Zp, = {Zy(1),- -+ Zo(i) } » TR = {To(it1)s - - > To(n) }-

VYm € mons(ZTr,), m € mons(ZTg), M m, m!] = coeff (m - m’
f f
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Reduction from CutWidth

Lemma (Bhargava-Dutta-Ghosh-T. 2024)
Given any graph G = (V. E), there is a polynomial f(x1,...,x,) such that:

e n=|Vl
o Vo€ S,,i€[n], rk (M}g“) = #tedges(o[l : i],0fi+1:n]) + 2,
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Given any graph G = (V. E), there is a polynomial f(x1,...,x,) such that:

e n=|V|,

o Vo€ Sy icln], tk (M}Z’“) = #edges(o[l : ], 0li +1:n]) + 2,
e deg(fg) = 2 - degree(G) and ideg(f¢) = degree(G) + 1,
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Reduction from CutWidth

Lemma (Bhargava-Dutta-Ghosh-T. 2024)
Given any graph G = (V. E), there is a polynomial f(x1,...,x,) such that:

e n=|V|

o Vo€ Sy icln], tk (M}Z’“) = #edges(o[l : ], 0li +1:n]) + 2,
e deg(fg) = 2 - degree(G) and ideg(f¢) = degree(G) + 1,

e fg has |E|+ |V|+ 1 monomials.

Fact (Monien-Sudborough 1988)
CutWidth is NP-complete, even for planar graphs of degree 3.
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Hardness Results

Theorem (Algebraic MCSP)

For any constant A > 6, order finding for n-variate, degree-A polynomials is NP-hard,
even when f is given in the dense representation (algebraic analogue of a truth table).
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Hardness Results

Theorem (Algebraic MCSP)

For any constant A > 6, order finding for n-variate, degree-A polynomials is NP-hard,
even when f is given in the dense representation (algebraic analogue of a truth table).

Proof. Truth table has length ("1*) = poly(n) for constant A.

Theorem (Algebraic Circuit Minimization)

Order finding problem is NP-hard, even when f is given as an algebraic circuit.

Proof. CircuitSize(fg) = O(n?). (Truth table length ~ 2" for degree Q(n).)
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Proof ldeas

E-time worst-case algorithm
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How to beat n!?

Theorem (Nisan’s characterization)
ROABPwidth, (f(z1,...,z,)) < w, iff

ke (M) <wforall 1 < i <. {EQ’ 545t
{1,2,3,5}
E.g. Forn=5 0= (5,2,3,1,4), N
5 2,5 2,3,5

rk(M ™), {k(M} 1), k(M ***) and (2,3,5)
rk(M}l’Q’&o}) are all at most w. /

‘ 2,5
]W;Z’ has mons in x5 and xg as rows and columns. {2,5}
Observation. ROABPwidth, (f(z1, ... ,an)) < w iff {5}

\

‘o traces an @ to [n] path in the graph H,(f)".
H,,(f): induced subgraph of hypercube, where
S € Hy(f) if and only if rk(]W;?) < w.

13



E-time algorithm: Search on the Hypercube
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E-time algorithm: Search on the Hypercube

Observation

ROABPwidth, (f(z1,...,2,)) <w  iff o traces an @ to [n] path in the graph H,(f).

Fact
For any f(x1,...,2,) of deg d, and S C [n], checking if rk(Mf) < w reduces to PIT.

Algorithm. FindOrder (f,w)

1. PopulateGraph(f,w): Find H,/(f) using a DFS starting at @ (and above fact).
2. Output any o that traces an @ to [n] path in H,(f).

14



Proof ldeas

Algorithm for the generic case



Random/generic ROABPs

p21(z2)
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Generic ROABP for n =5, w =2 and o = (5,2, 3,1,4): random coeffs for p;;s.

15



Random/generic ROABPs

p21(z2)

paa@e) T pa(ws) T pule)
Generic ROABP for n =5, w =2 and o = (5,2, 3,1,4): random coeffs for p;;s.

Definition ((n,d, w, o, D)-Generic ROABP)
ROABP in order o with all coefficients of edge labels (~ ndw?) iid according to D.
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Bad inputs for PopulateGraph

Algorithm. FindOrder (f,w)
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e Bad input f: H,(f) has many vertices, but very few & to [n] paths.
DFS has to backtrack from several blocked paths.

e We show: for generic f € ROABP(n,d, w, o), H,(f) only has the obvious vertices.
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Bad inputs for PopulateGraph

Algorithm. FindOrder (f,w)

1. PopulateGraph(f,w): Find H,(f) using a DFS starting at @ (and above fact).
2. Output any o that traces an & to [n] path in the populated graph.

Key idea. Bad inputs are special (i.e. not generic).

e Bad input f: H,(f) has many vertices, but very few & to [n] paths.
DFS has to backtrack from several blocked paths.

e We show: for generic f € ROABP(n,d, w, o), H,(f) only has the obvious vertices.
rk(M7) < w when S is a prefix of o, or [S] is too small (M7 is skewed).

e For “inconsistent” S, fs with rk(]\[f) < w form a strict subvariety of ROABP(n, d, w, o).
[SZ lemma]: H,(f) has n®U°8a(®)) vertices w.h.p., for any large-enough domain.
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Average Case Results

Theorem (Average-case algorithm)

Over all sets D of size 2'°” and for any n,d, w, o,
PopulateGraph runs in randomized time n°(°24(*)) . poly(d, w) on a random /generic input
from ROABP(n,d, w, o) w.h.p., where the coeffs are drawn from D.

e Polynomial time when w = d°).

e Quasi-polynomial time even when d = O(1).
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Average Case Results

Theorem (Average-case algorithm)

Over all sets D of size 2'°” and for any n,d, w, o,
PopulateGraph runs in randomized time n°(°24(*)) . poly(d, w) on a random /generic input
from ROABP(n,d, w, o) w.h.p., where the coeffs are drawn from D.

e Polynomial time when w = d°).

e Quasi-polynomial time even when d = O(1).

Remark. We need |D| ~ 2" due to a union bound over all inconsistent S.
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e ROABPs can be proper-learnt efficiently when order is known.
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ROABPs can be proper-learnt efficiently when order is known.

e Order-finding problem is NP-hard even in simple, “white-box" settings.
(Only other algebraic MCSP results are for tensor and Waring ranks [Hastad'90].)

e Order-finding can be solved in average case in (quasi-)polynomial time.

e Approximation algorithms.

o ROABPwidth is hard to approximate up to any constant factor under SSE conjecture.
o Unconditionally, any constant approximation for ROABPwidth leads to a PTAS.
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Open Questions

e Average-case algorithm.
o Polynomial time for constant individual degree?
Will require a different approach.
o Better dependence on domain-size.
Different argument that bypasses the union bound.
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Open Questions

e Average-case algorithm.

o Polynomial time for constant individual degree?
Will require a different approach.
o Better dependence on domain-size.
Different argument that bypasses the union bound.

e Hardness of approximation.

e |s CutWidth hard to approximate up to a constant factor (without SSE)?
e |s ROABPwidth hard to approximate (for some other reason)?
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Thank youl!

ABP-figure credits: Prerona Chatterjee
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