
Finding the Order of an ROABP

Can we proper-learn ROABPs?

Anamay Tengse

TIFR, June 11, 2025

joint work with Vishwas Bhargava, Pranjal Dutta and Sumanta Ghosh

Polynomial Identity Testing (PIT)

(n vars, d deg, size s)

Identity Testing

Algorithm

TC

(a1,1, . . . , a1,n)

f(a1)
...

(ar,1, . . . , ar,n)

f(ar)

Is f(x) identically zero?

f(x)

C(n, d, s)

· · ·
x1 x2 xn−1 xn

Known. Randomized, poly(n, d, s)-time algorithm for circuits.

Open. Deterministic algorithm for circuits, making fewer than dn queries.

1

Polynomial Identity Testing (PIT)

(n vars, d deg, size s)

Identity Testing

Algorithm

TC

(a1,1, . . . , a1,n)

f(a1)
...

(ar,1, . . . , ar,n)

f(ar)

Is f(x) identically zero?

f(x)

C(n, d, s)

· · ·
x1 x2 xn−1 xn

Known. Randomized, poly(n, d, s)-time algorithm for circuits.

Open. Deterministic algorithm for circuits, making fewer than dn queries.

1

Polynomial Identity Testing (PIT)

(n vars, d deg, size s)

Identity Testing

Algorithm

TC

(a1,1, . . . , a1,n)

f(a1)
...

(ar,1, . . . , ar,n)

f(ar)

Is f(x) identically zero?

f(x)

C(n, d, s)

· · ·
x1 x2 xn−1 xn

Known. Randomized, poly(n, d, s)-time algorithm for circuits.

Open. Deterministic algorithm for circuits, making fewer than dn queries.

1

Reconstruction (“Proper-Learning”) of Polynomials

(n vars, d deg, size s)

Reconstruction

Algorithm

RC

(a1,1, . . . , a1,n)

f(a1)
...

(ar,1, . . . , ar,n)

f(ar)

C ∈ C computing f(x), of size s

f(x)

C(n, d, s)

· · ·
x1 x2 xn−1 xn

RC exists: “The class C can be proper-learnt in <complexity-of-R>”

2

Reconstruction (“Proper-Learning”) of Polynomials

(n vars, d deg, size s)

Reconstruction

Algorithm

RC

(a1,1, . . . , a1,n)

f(a1)
...

(ar,1, . . . , ar,n)

f(ar)

C ∈ C computing f(x), of size s

f(x)

C(n, d, s)

· · ·
x1 x2 xn−1 xn

RC exists: “The class C can be proper-learnt in <complexity-of-R>”

2

Reconstruction (“Proper-Learning”) of Polynomials

(n vars, d deg, size s)

Reconstruction

Algorithm

RC

(a1,1, . . . , a1,n)

f(a1)
...

(ar,1, . . . , ar,n)

f(ar)

C ∈ C computing f(x), of size s

f(x)

C(n, d, s)

· · ·
x1 x2 xn−1 xn

RC exists: “The class C can be proper-learnt in <complexity-of-R>”

2

The Question

Read-once Oblivious ABPs

Algebraic Branching Programs (ABPs)

s

t

A

• Label on each edge: An linear polynomial in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p) (sum over s to t paths)

• Size of the ABP: total number of vertices (9 in the example)

3

Algebraic Branching Programs (ABPs)

s

t
(2x+ 3) (x+ 3y) (y + 5)

10
(x+ y + 7)

A

• Label on each edge: An linear polynomial in {x1, x2, . . . , xn}

• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p) (sum over s to t paths)

• Size of the ABP: total number of vertices (9 in the example)

3

Algebraic Branching Programs (ABPs)

s

t
(2x+ 3)(2x+ 3) (x+ 3y)(x+ 3y) (y + 5)(y + 5)

1010
(x+ y + 7)(x+ y + 7)

A

• Label on each edge: An linear polynomial in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p) (sum over s to t paths)

• Size of the ABP: total number of vertices (9 in the example)

3

Algebraic Branching Programs (ABPs)

s

t
(2x+ 3) (x+ 3y) (y + 5)

10
(x+ y + 7)

A

• Label on each edge: An linear polynomial in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p) (sum over s to t paths)

• Size of the ABP: total number of vertices (9 in the example)

3

Algebraic Branching Programs (ABPs)

s

t
(2x+ 3) (x+ 3y) (y + 5)

10
(x+ y + 7)

A

• Label on each edge: An linear polynomial in {x1, x2, . . . , xn}
• Polynomial computed by the path p = wt(p): Product of the edge labels on p

• Polynomial computed by the ABP: fA(x) =
∑

p wt(p) (sum over s to t paths)

• Size of the ABP: total number of vertices (9 in the example)

3

Read-once Oblivious ABPs

s

t
(2x1 + 3) (x2

2 + 5x2) (11− x3)
10

(x2
5 − 7)

A

F[x1] F[x2] F[x3] F[x4] F[x5]

ROABP (n-variate, degree-d, width-w)

• On each s to t path, every variable is read-once, oblivious of the others.

• The ith layer of edges only has degree-d univariates in xi as labels.

• Width of the ROABP: Maximum number of vertices in any layer.

• Order of the ROABP: permutation σ ∈ sn in which the variables are read.

4

Read-once Oblivious ABPs

s

t
(2x1 + 3) (x2

2 + 5x2) (11− x3)
10

(x2
5 − 7)

A

F[x1] F[x2] F[x3] F[x4] F[x5]

ROABP (n-variate, degree-d, width-w)

• On each s to t path, every variable is read-once, oblivious of the others.

• The ith layer of edges only has degree-d univariates in xi as labels.

• Width of the ROABP: Maximum number of vertices in any layer.

• Order of the ROABP: permutation σ ∈ sn in which the variables are read.

4

Read-once Oblivious ABPs

s

t
(2x1 + 3) (x2

2 + 5x2) (11− x3)
10

(x2
5 − 7)

A

F[x1] F[x2] F[x3] F[x4] F[x5]

ROABP (n-variate, degree-d, width-w)

• On each s to t path, every variable is read-once, oblivious of the others.

• The ith layer of edges only has degree-d univariates in xi as labels.

• Width of the ROABP: Maximum number of vertices in any layer.

• Order of the ROABP: permutation σ ∈ sn in which the variables are read.

4

Read-once Oblivious ABPs

s

t
(2x1 + 3) (x2

2 + 5x2) (11− x3)
10

(x2
5 − 7)

A

F[x1] F[x2] F[x3] F[x4] F[x5]

ROABP (n-variate, degree-d, width-w)

• On each s to t path, every variable is read-once, oblivious of the others.

• The ith layer of edges only has degree-d univariates in xi as labels.

• Width of the ROABP: Maximum number of vertices in any layer.

• Order of the ROABP: permutation σ ∈ sn in which the variables are read.

4

Read-once Oblivious ABPs

s

t
(2x1 + 3) (x2

2 + 5x2) (11− x3)
10

(x2
5 − 7)

A

F[x1] F[x2] F[x3] F[x4] F[x5]

ROABP (n-variate, degree-d, width-w)

• On each s to t path, every variable is read-once, oblivious of the others.

• The ith layer of edges only has degree-d univariates in xi as labels.

• Width of the ROABP: Maximum number of vertices in any layer.

• Order of the ROABP: permutation σ ∈ sn in which the variables are read.

4

Read-once Oblivious ABPs

s

t
(2x1 + 3) (x2

2 + 5x2) (11− x3)
10

(x2
5 − 7)

A

F[x1] F[x2] F[x3] F[x4] F[x5]

ROABP (n-variate, degree-d, width-w, order σ)

• On each s to t path, every variable is read-once, oblivious of the others.

• The ith layer of edges only has degree-d univariates in xσ(i) as labels.

• Width of the ROABP: Maximum number of vertices in any layer.

• Order of the ROABP: permutation σ ∈ sn in which the variables are read.

4

ROABPs and Order

Example. Width depends on Order

F (x, y) has a width 2 ROABP in the order (x1, y1, x2, y2, . . . , xn, yn),

but requires width 2n in the order (x1, x2, . . . , xn, y1, y2, . . . , yn).

F (x, y) := (x1 + y1)(x2 + y2) · · · (xn + yn)

5

State of the art for ROABPs

• Lower Bounds. Easy, due to an explicit characterization (Nisan 1991) to compute the

optimal width in each layer exactly.

• Identity Testing.

• Algorithm can access circuit (“Whitebox”): Deterministic time poly(n, d, w).

• Algorithm can only query (“Blackbox”): Deterministic time (ndw)O(logn).

• Reconstruction. Randomized polytime, and deterministic time (ndw)O(logn),

when the algorithm is given the order.

Q. What is the complexity of finding the order?

6

State of the art for ROABPs

• Lower Bounds. Easy, due to an explicit characterization (Nisan 1991) to compute the

optimal width in each layer exactly.

• Identity Testing.

• Algorithm can access circuit (“Whitebox”): Deterministic time poly(n, d, w).

• Algorithm can only query (“Blackbox”): Deterministic time (ndw)O(logn).

• Reconstruction. Randomized polytime, and deterministic time (ndw)O(logn),

when the algorithm is given the order.

Q. What is the complexity of finding the order?

6

State of the art for ROABPs

• Lower Bounds. Easy, due to an explicit characterization (Nisan 1991) to compute the

optimal width in each layer exactly.

• Identity Testing.

• Algorithm can access circuit (“Whitebox”): Deterministic time poly(n, d, w).

• Algorithm can only query (“Blackbox”): Deterministic time (ndw)O(logn).

• Reconstruction. Randomized polytime, and deterministic time (ndw)O(logn),

when the algorithm is given the order.

Q. What is the complexity of finding the order?

6

State of the art for ROABPs

• Lower Bounds. Easy, due to an explicit characterization (Nisan 1991) to compute the

optimal width in each layer exactly.

• Identity Testing.

• Algorithm can access circuit (“Whitebox”): Deterministic time poly(n, d, w).

• Algorithm can only query (“Blackbox”): Deterministic time (ndw)O(logn).

• Reconstruction. Randomized polytime, and deterministic time (ndw)O(logn),

when the algorithm is given the order.

Q. What is the complexity of finding the order?

6

The Question

Order Finding Problem

Given parameters n, d, w ∈ N and a polynomial f(x), find some order σ in which f has an

ROABP of width at most w.

Note. Using reconstruction, we can check if the given w is correct. So we can assume WLOG

that f has an ROABP of width w in some order, hence the following is a simpler problem.

Order Finding Problem (Decision)

Given an n-variate, degree-d polynomial f(x), and a parameter w ∈ N, determine if f has an

ROABP of width at most w in some order σ.

7

The Question

Order Finding Problem

Given parameters n, d, w ∈ N and a polynomial f(x), find some order σ in which f has an

ROABP of width at most w.

Note. Using reconstruction, we can check if the given w is correct. So we can assume WLOG

that f has an ROABP of width w in some order, hence the following is a simpler problem.

Order Finding Problem (Decision)

Given an n-variate, degree-d polynomial f(x), and a parameter w ∈ N, determine if f has an

ROABP of width at most w in some order σ.

7

The Question

Order Finding Problem

Given parameters n, d, w ∈ N and a polynomial f(x), find some order σ in which f has an

ROABP of width at most w.

Note. Using reconstruction, we can check if the given w is correct. So we can assume WLOG

that f has an ROABP of width w in some order, hence the following is a simpler problem.

Order Finding Problem (Decision)

Given an n-variate, degree-d polynomial f(x), and a parameter w ∈ N, determine if f has an

ROABP of width at most w in some order σ.

7

Our Results

NP hardness (Algebraic Circuit Minimization)

Order finding problem is NP-hard, even when f is given as an algebraic circuit.

NP hardness for constant degree (Algebraic MCSP)

For any constant ∆ ≥ 6, order finding for n-variate, degree-∆ polynomials is NP-hard,

even when f is given in the dense representation (algebraic analogue of a truth table).

Average-case algorithm

Randomized order-finding algorithm that runs in polytime for a random/generic ROABP.

8

Our Results

NP hardness (Algebraic Circuit Minimization)

Order finding problem is NP-hard, even when f is given as an algebraic circuit.

NP hardness for constant degree (Algebraic MCSP)

For any constant ∆ ≥ 6, order finding for n-variate, degree-∆ polynomials is NP-hard,

even when f is given in the dense representation (algebraic analogue of a truth table).

Average-case algorithm

Randomized order-finding algorithm that runs in polytime for a random/generic ROABP.

8

Our Results

NP hardness (Algebraic Circuit Minimization)

Order finding problem is NP-hard, even when f is given as an algebraic circuit.

NP hardness for constant degree (Algebraic MCSP)

For any constant ∆ ≥ 6, order finding for n-variate, degree-∆ polynomials is NP-hard,

even when f is given in the dense representation (algebraic analogue of a truth table).

Average-case algorithm

Randomized order-finding algorithm that runs in polytime for a random/generic ROABP.

8

Proof Ideas

NP-hardness

Linear Arrangement of Graphs

Goal. Show that finding an optimal order is hard.

G

1

2

3

4 5

Arrangement of G with (5, 2, 3, 1, 4)

5 2 3 1 4

CutWidth(G) := min
σ∈Sn

CutWidthσ(G) := min
σ∈Sn

(
max
i∈[n]

#edges(σ[1 : i], σ[i+ 1 : n])

)

9

Linear Arrangement of Graphs

Goal. Show that finding an optimal order is hard.

G

1

2

3

4 5

Arrangement of G with (5, 2, 3, 1, 4)

5 2 3 1 4

CutWidth(G) := min
σ∈Sn

CutWidthσ(G) := min
σ∈Sn

(
max
i∈[n]

#edges(σ[1 : i], σ[i+ 1 : n])

)

9

Linear Arrangement of Graphs

Goal. Show that finding an optimal order is hard.

G

1

2

3

4 5

Arrangement of G with (5, 2, 3, 1, 4)

5 2 3 1 4

CutWidth(G) := min
σ∈Sn

CutWidthσ(G) := min
σ∈Sn

(
max
i∈[n]

#edges(σ[1 : i], σ[i+ 1 : n])

)

9

Linear Arrangement of Graphs

Goal. Show that finding an optimal order is hard.

G

1

2

3

4 5

Arrangement of G with (5, 2, 3, 1, 4)

5 2 3 1 4

CutWidth(G) := min
σ∈Sn

CutWidthσ(G) := min
σ∈Sn

(
max
i∈[n]

#edges(σ[1 : i], σ[i+ 1 : n])

)

9

Linear Arrangement of Graphs

Goal. Show that finding an optimal order is hard.

G

1

2

3

4 5

Arrangement of G with (5, 2, 3, 1, 4)

5 2 3 1 4

CutWidth(G) := min
σ∈Sn

CutWidthσ(G) := min
σ∈Sn

(
max
i∈[n]

#edges(σ[1 : i], σ[i+ 1 : n])

)

9

Linear Arrangement of Graphs

Goal. Show that finding an optimal order is hard.

G

1

2

3

4 5

CutWidth of G for (5, 2, 3, 1, 4) is 3

5 2 3 1 4

CutWidth(G) := min
σ∈Sn

CutWidthσ(G) := min
σ∈Sn

(
max
i∈[n]

#edges(σ[1 : i], σ[i+ 1 : n])

)

9

Reduction from CutWidth

CutWidth(G) := min
σ∈Sn

(
max
i∈[n]

#edges(σ[1 : i], σ[i+ 1 : n])

)

ROABPwidth(f) := min
σ∈Sn

(
max
i∈[n]

{vertices in layer i}
)

Theorem (implied by [Nisan 1991])

For any f(x), the optimal ROABP for f in the order σ has exactly wi = rk
(
M

(σ,i)
f

)
vertices

in layer i,

where M
(σ,i)
f is as follows, for xL =

{
xσ(1), . . . , xσ(i)

}
, xR =

{
xσ(i+1), . . . , xσ(n)

}
.

∀m ∈ mons(xL),m
′ ∈ mons(xR), M

(σ,i)
f [m,m′] = coefff (m ·m′)

10

Reduction from CutWidth

CutWidth(G) := min
σ∈Sn

(
max
i∈[n]

#edges(σ[1 : i], σ[i+ 1 : n])

)

ROABPwidth(f) := min
σ∈Sn

(
max
i∈[n]

{vertices in layer i}
)

Theorem (implied by [Nisan 1991])

For any f(x), the optimal ROABP for f in the order σ has exactly wi = rk
(
M

(σ,i)
f

)
vertices

in layer i,

where M
(σ,i)
f is as follows, for xL =

{
xσ(1), . . . , xσ(i)

}
, xR =

{
xσ(i+1), . . . , xσ(n)

}
.

∀m ∈ mons(xL),m
′ ∈ mons(xR), M

(σ,i)
f [m,m′] = coefff (m ·m′)

10

Reduction from CutWidth

CutWidth(G) := min
σ∈Sn

(
max
i∈[n]

#edges(σ[1 : i], σ[i+ 1 : n])

)

ROABPwidth(f) := min
σ∈Sn

(
max
i∈[n]

{vertices in layer i}
)

Theorem (implied by [Nisan 1991])

For any f(x), the optimal ROABP for f in the order σ has exactly wi = rk
(
M

(σ,i)
f

)
vertices

in layer i,

where M
(σ,i)
f is as follows, for xL =

{
xσ(1), . . . , xσ(i)

}
, xR =

{
xσ(i+1), . . . , xσ(n)

}
.

∀m ∈ mons(xL),m
′ ∈ mons(xR), M

(σ,i)
f [m,m′] = coefff (m ·m′)

10

Reduction from CutWidth

CutWidth(G) := min
σ∈Sn

(
max
i∈[n]

#edges(σ[1 : i], σ[i+ 1 : n])

)

ROABPwidth(f) := min
σ∈Sn

(
max
i∈[n]

{vertices in layer i}
)

Theorem (implied by [Nisan 1991])

For any f(x), the optimal ROABP for f in the order σ has exactly wi = rk
(
M

(σ,i)
f

)
vertices

in layer i, where M
(σ,i)
f is as follows, for xL =

{
xσ(1), . . . , xσ(i)

}
, xR =

{
xσ(i+1), . . . , xσ(n)

}
.

∀m ∈ mons(xL),m
′ ∈ mons(xR), M

(σ,i)
f [m,m′] = coefff (m ·m′)

10

Reduction from CutWidth

Lemma (Bhargava-Dutta-Ghosh-T. 2024)

Given any graph G = (V,E), there is a polynomial fG(x1, . . . , xn) such that:

• n = |V |,

• ∀σ ∈ Sn, i ∈ [n], rk
(
M

(σ,i)
fG

)
= #edges(σ[1 : i], σ[i+ 1 : n]) + 2,

• deg(fG) = 2 · degree(G) and ideg(fG) = degree(G) + 1,

• fG has |E|+ |V |+ 1 monomials.

Fact (Monien-Sudborough 1988)

CutWidth is NP-complete, even for planar graphs of degree 3.

11

Reduction from CutWidth

Lemma (Bhargava-Dutta-Ghosh-T. 2024)

Given any graph G = (V,E), there is a polynomial fG(x1, . . . , xn) such that:

• n = |V |,

• ∀σ ∈ Sn, i ∈ [n], rk
(
M

(σ,i)
fG

)
= #edges(σ[1 : i], σ[i+ 1 : n]) + 2,

• deg(fG) = 2 · degree(G) and ideg(fG) = degree(G) + 1,

• fG has |E|+ |V |+ 1 monomials.

Fact (Monien-Sudborough 1988)

CutWidth is NP-complete, even for planar graphs of degree 3.

11

Reduction from CutWidth

Lemma (Bhargava-Dutta-Ghosh-T. 2024)

Given any graph G = (V,E), there is a polynomial fG(x1, . . . , xn) such that:

• n = |V |,

• ∀σ ∈ Sn, i ∈ [n], rk
(
M

(σ,i)
fG

)
= #edges(σ[1 : i], σ[i+ 1 : n]) + 2,

• deg(fG) = 2 · degree(G) and ideg(fG) = degree(G) + 1,

• fG has |E|+ |V |+ 1 monomials.

Fact (Monien-Sudborough 1988)

CutWidth is NP-complete, even for planar graphs of degree 3.

11

Hardness Results

Theorem (Algebraic MCSP)

For any constant ∆ ≥ 6, order finding for n-variate, degree-∆ polynomials is NP-hard,

even when f is given in the dense representation (algebraic analogue of a truth table).

Proof. Truth table has length
(
n+∆
∆

)
= poly(n) for constant ∆.

Theorem (Algebraic Circuit Minimization)

Order finding problem is NP-hard, even when f is given as an algebraic circuit.

Proof. CircuitSize(fG) = O(n3). (Truth table length ∼ 2n for degree Ω(n).)

12

Hardness Results

Theorem (Algebraic MCSP)

For any constant ∆ ≥ 6, order finding for n-variate, degree-∆ polynomials is NP-hard,

even when f is given in the dense representation (algebraic analogue of a truth table).

Proof. Truth table has length
(
n+∆
∆

)
= poly(n) for constant ∆.

Theorem (Algebraic Circuit Minimization)

Order finding problem is NP-hard, even when f is given as an algebraic circuit.

Proof. CircuitSize(fG) = O(n3). (Truth table length ∼ 2n for degree Ω(n).)

12

Proof Ideas

E-time worst-case algorithm

How to beat n!?

Theorem (Nisan’s characterization)

ROABPwidthσ(f(x1, . . . , xn)) ≤ w, iff

rk
(
M

(σ,i)
f

)
≤ w for all 1 < i < n.

E.g. For n = 5, σ = (5, 2, 3, 1, 4),

rk(M
{5}
f), rk(M

{2,5}
f), rk(M

{2,3,5}
f) and

rk(M
{1,2,3,5}
f) are all at most w.

MS
f has mons in xS and xS as rows and columns.

Observation. ROABPwidthσ(f(x1, . . . , xn)) ≤ w iff

‘σ traces an ∅ to [n] path in the graph Hw(f)’.

Hw(f): induced subgraph of hypercube, where

S ∈ Hw(f) if and only if rk(MS
f) ≤ w.

{5}

{2, 5}

{2, 3, 5}

{1, 2, 3, 5}

{1, 2, 3, 4, 5}

∅

13

How to beat n!?

Theorem (Nisan’s characterization)

ROABPwidthσ(f(x1, . . . , xn)) ≤ w, iff

rk
(
M

(σ,i)
f

)
≤ w for all 1 < i < n.

E.g. For n = 5, σ = (5, 2, 3, 1, 4),

rk(M
{5}
f), rk(M

{2,5}
f), rk(M

{2,3,5}
f) and

rk(M
{1,2,3,5}
f) are all at most w.

MS
f has mons in xS and xS as rows and columns.

Observation. ROABPwidthσ(f(x1, . . . , xn)) ≤ w iff

‘σ traces an ∅ to [n] path in the graph Hw(f)’.

Hw(f): induced subgraph of hypercube, where

S ∈ Hw(f) if and only if rk(MS
f) ≤ w.

{5}

{2, 5}

{2, 3, 5}

{1, 2, 3, 5}

{1, 2, 3, 4, 5}

∅

13

How to beat n!?

Theorem (Nisan’s characterization)

ROABPwidthσ(f(x1, . . . , xn)) ≤ w, iff

rk
(
M

(σ,i)
f

)
≤ w for all 1 < i < n.

E.g. For n = 5, σ = (5, 2, 3, 1, 4),

rk(M
{5}
f), rk(M

{2,5}
f), rk(M

{2,3,5}
f) and

rk(M
{1,2,3,5}
f) are all at most w.

MS
f has mons in xS and xS as rows and columns.

Observation. ROABPwidthσ(f(x1, . . . , xn)) ≤ w iff

‘σ traces an ∅ to [n] path in the graph Hw(f)’.

Hw(f): induced subgraph of hypercube, where

S ∈ Hw(f) if and only if rk(MS
f) ≤ w.

{5}

{2, 5}

{2, 3, 5}

{1, 2, 3, 5}

{1, 2, 3, 4, 5}

∅

13

How to beat n!?

Theorem (Nisan’s characterization)

ROABPwidthσ(f(x1, . . . , xn)) ≤ w, iff

rk
(
M

(σ,i)
f

)
≤ w for all 1 < i < n.

E.g. For n = 5, σ = (5, 2, 3, 1, 4),

rk(M
{5}
f), rk(M

{2,5}
f), rk(M

{2,3,5}
f) and

rk(M
{1,2,3,5}
f) are all at most w.

MS
f has mons in xS and xS as rows and columns.

Observation. ROABPwidthσ(f(x1, . . . , xn)) ≤ w iff

‘σ traces an ∅ to [n] path in the graph Hw(f)’.

Hw(f): induced subgraph of hypercube, where

S ∈ Hw(f) if and only if rk(MS
f) ≤ w.

{5}

{2, 5}

{2, 3, 5}

{1, 2, 3, 5}

{1, 2, 3, 4, 5}

∅

13

How to beat n!?

Theorem (Nisan’s characterization)

ROABPwidthσ(f(x1, . . . , xn)) ≤ w, iff

rk
(
M

(σ,i)
f

)
≤ w for all 1 < i < n.

E.g. For n = 5, σ = (5, 2, 3, 1, 4),

rk(M
{5}
f), rk(M

{2,5}
f), rk(M

{2,3,5}
f) and

rk(M
{1,2,3,5}
f) are all at most w.

MS
f has mons in xS and xS as rows and columns.

Observation. ROABPwidthσ(f(x1, . . . , xn)) ≤ w iff

‘σ traces an ∅ to [n] path in the graph Hw(f)’.

Hw(f): induced subgraph of hypercube, where

S ∈ Hw(f) if and only if rk(MS
f) ≤ w.

{5}

{2, 5}

{2, 3, 5}

{1, 2, 3, 5}

{1, 2, 3, 4, 5}

∅

13

E-time algorithm: Search on the Hypercube

Observation

ROABPwidthσ(f(x1, . . . , xn)) ≤ w iff σ traces an ∅ to [n] path in the graph Hw(f).

Fact

For any f(x1, . . . , xn) of deg d, and S ⊆ [n], checking if rk(MS
f) ≤ w reduces to PIT.

Algorithm. FindOrder(f,w)

1. PopulateGraph(f,w): Find Hw(f) using a DFS starting at ∅ (and above fact).

2. Output any σ that traces an ∅ to [n] path in Hw(f).

14

E-time algorithm: Search on the Hypercube

Observation

ROABPwidthσ(f(x1, . . . , xn)) ≤ w iff σ traces an ∅ to [n] path in the graph Hw(f).

Fact

For any f(x1, . . . , xn) of deg d, and S ⊆ [n], checking if rk(MS
f) ≤ w reduces to PIT.

Algorithm. FindOrder(f,w)

1. PopulateGraph(f,w): Find Hw(f) using a DFS starting at ∅ (and above fact).

2. Output any σ that traces an ∅ to [n] path in Hw(f).

14

E-time algorithm: Search on the Hypercube

Observation

ROABPwidthσ(f(x1, . . . , xn)) ≤ w iff σ traces an ∅ to [n] path in the graph Hw(f).

Fact

For any f(x1, . . . , xn) of deg d, and S ⊆ [n], checking if rk(MS
f) ≤ w reduces to PIT.

Algorithm. FindOrder(f,w)

1. PopulateGraph(f,w): Find Hw(f) using a DFS starting at ∅ (and above fact).

2. Output any σ that traces an ∅ to [n] path in Hw(f).

14

Proof Ideas

Algorithm for the generic case

Random/generic ROABPs

s t

p51(x5)

p52(x5)

p21(x2)

p22(x2)

p23(x2)

p24(x2)

p31(x3)

p32(x3)

p33(x3)

p34(x3)

p11(x1)

p12(x1)

p13(x1)

p14(x1)

p41(x4)

p42(x4)

Generic ROABP for n = 5, w = 2 and σ = (5, 2, 3, 1, 4): random coeffs for pijs.

Definition ((n, d, w, σ,D)-Generic ROABP)

ROABP in order σ with all coefficients of edge labels (∼ ndw2) iid according to D.

15

Random/generic ROABPs

s t

p51(x5)

p52(x5)

p21(x2)

p22(x2)

p23(x2)

p24(x2)

p31(x3)

p32(x3)

p33(x3)

p34(x3)

p11(x1)

p12(x1)

p13(x1)

p14(x1)

p41(x4)

p42(x4)

Generic ROABP for n = 5, w = 2 and σ = (5, 2, 3, 1, 4): random coeffs for pijs.

Definition ((n, d, w, σ,D)-Generic ROABP)

ROABP in order σ with all coefficients of edge labels (∼ ndw2) iid according to D.

15

Bad inputs for PopulateGraph

Algorithm. FindOrder(f,w)

1. PopulateGraph(f,w): Find Hw(f) using a DFS starting at ∅ (and above fact).

2. Output any σ that traces an ∅ to [n] path in the populated graph.

Key idea. Bad inputs are special (i.e. not generic).

• Bad input f : Hw(f) has many vertices, but very few ∅ to [n] paths.

DFS has to backtrack from several blocked paths.

• We show: for generic f ∈ ROABP(n, d, w, σ), Hw(f) only has the obvious vertices.

rk(MS
f) ≤ w when S is a prefix of σ, or |S| is too small (MS

f is skewed).

• For “inconsistent” S, fs with rk(MS
f) ≤ w form a strict subvariety of ROABP(n, d, w, σ).

[SZ lemma]: Hw(f) has n
O(logd(w)) vertices w.h.p., for any large-enough domain.

16

Bad inputs for PopulateGraph

Algorithm. FindOrder(f,w)

1. PopulateGraph(f,w): Find Hw(f) using a DFS starting at ∅ (and above fact).

2. Output any σ that traces an ∅ to [n] path in the populated graph.

Key idea. Bad inputs are special (i.e. not generic).

• Bad input f : Hw(f) has many vertices, but very few ∅ to [n] paths.

DFS has to backtrack from several blocked paths.

• We show: for generic f ∈ ROABP(n, d, w, σ), Hw(f) only has the obvious vertices.

rk(MS
f) ≤ w when S is a prefix of σ, or |S| is too small (MS

f is skewed).

• For “inconsistent” S, fs with rk(MS
f) ≤ w form a strict subvariety of ROABP(n, d, w, σ).

[SZ lemma]: Hw(f) has n
O(logd(w)) vertices w.h.p., for any large-enough domain.

16

Bad inputs for PopulateGraph

Algorithm. FindOrder(f,w)

1. PopulateGraph(f,w): Find Hw(f) using a DFS starting at ∅ (and above fact).

2. Output any σ that traces an ∅ to [n] path in the populated graph.

Key idea. Bad inputs are special (i.e. not generic).

• Bad input f : Hw(f) has many vertices, but very few ∅ to [n] paths.

DFS has to backtrack from several blocked paths.

• We show: for generic f ∈ ROABP(n, d, w, σ), Hw(f) only has the obvious vertices.

rk(MS
f) ≤ w when S is a prefix of σ, or |S| is too small (MS

f is skewed).

• For “inconsistent” S, fs with rk(MS
f) ≤ w form a strict subvariety of ROABP(n, d, w, σ).

[SZ lemma]: Hw(f) has n
O(logd(w)) vertices w.h.p., for any large-enough domain.

16

Bad inputs for PopulateGraph

Algorithm. FindOrder(f,w)

1. PopulateGraph(f,w): Find Hw(f) using a DFS starting at ∅ (and above fact).

2. Output any σ that traces an ∅ to [n] path in the populated graph.

Key idea. Bad inputs are special (i.e. not generic).

• Bad input f : Hw(f) has many vertices, but very few ∅ to [n] paths.

DFS has to backtrack from several blocked paths.

• We show: for generic f ∈ ROABP(n, d, w, σ), Hw(f) only has the obvious vertices.

rk(MS
f) ≤ w when S is a prefix of σ, or |S| is too small (MS

f is skewed).

• For “inconsistent” S, fs with rk(MS
f) ≤ w form a strict subvariety of ROABP(n, d, w, σ).

[SZ lemma]: Hw(f) has n
O(logd(w)) vertices w.h.p., for any large-enough domain.

16

Bad inputs for PopulateGraph

Algorithm. FindOrder(f,w)

1. PopulateGraph(f,w): Find Hw(f) using a DFS starting at ∅ (and above fact).

2. Output any σ that traces an ∅ to [n] path in the populated graph.

Key idea. Bad inputs are special (i.e. not generic).

• Bad input f : Hw(f) has many vertices, but very few ∅ to [n] paths.

DFS has to backtrack from several blocked paths.

• We show: for generic f ∈ ROABP(n, d, w, σ), Hw(f) only has the obvious vertices.

rk(MS
f) ≤ w when S is a prefix of σ, or |S| is too small (MS

f is skewed).

• For “inconsistent” S, fs with rk(MS
f) ≤ w form a strict subvariety of ROABP(n, d, w, σ).

[SZ lemma]: Hw(f) has n
O(logd(w)) vertices w.h.p., for any large-enough domain.

16

Average Case Results

Theorem (Average-case algorithm)

Over all sets D of size 210n,and for any n, d, w, σ,

PopulateGraph runs in randomized time nO(logd(w)) · poly(d,w) on a random/generic input

from ROABP(n, d, w, σ) w.h.p., where the coeffs are drawn from D.

• Polynomial time when w = dO(1).

• Quasi-polynomial time even when d = O(1).

Remark. We need |D| ∼ 2n due to a union bound over all inconsistent S.

17

Average Case Results

Theorem (Average-case algorithm)

Over all sets D of size 210n,and for any n, d, w, σ,

PopulateGraph runs in randomized time nO(logd(w)) · poly(d,w) on a random/generic input

from ROABP(n, d, w, σ) w.h.p., where the coeffs are drawn from D.

• Polynomial time when w = dO(1).

• Quasi-polynomial time even when d = O(1).

Remark. We need |D| ∼ 2n due to a union bound over all inconsistent S.

17

Summary

Our Work

• ROABPs can be proper-learnt efficiently when order is known.

• Order-finding problem is NP-hard even in simple, “white-box” settings.

(Only other algebraic MCSP results are for tensor and Waring ranks [Håstad’90].)

• Order-finding can be solved in average case in (quasi-)polynomial time.

• Approximation algorithms.

o ROABPwidth is hard to approximate up to any constant factor under SSE conjecture.

o Unconditionally, any constant approximation for ROABPwidth leads to a PTAS.

18

Our Work

• ROABPs can be proper-learnt efficiently when order is known.

• Order-finding problem is NP-hard even in simple, “white-box” settings.

(Only other algebraic MCSP results are for tensor and Waring ranks [Håstad’90].)

• Order-finding can be solved in average case in (quasi-)polynomial time.

• Approximation algorithms.

o ROABPwidth is hard to approximate up to any constant factor under SSE conjecture.

o Unconditionally, any constant approximation for ROABPwidth leads to a PTAS.

18

Our Work

• ROABPs can be proper-learnt efficiently when order is known.

• Order-finding problem is NP-hard even in simple, “white-box” settings.

(Only other algebraic MCSP results are for tensor and Waring ranks [Håstad’90].)

• Order-finding can be solved in average case in (quasi-)polynomial time.

• Approximation algorithms.

o ROABPwidth is hard to approximate up to any constant factor under SSE conjecture.

o Unconditionally, any constant approximation for ROABPwidth leads to a PTAS.

18

Our Work

• ROABPs can be proper-learnt efficiently when order is known.

• Order-finding problem is NP-hard even in simple, “white-box” settings.

(Only other algebraic MCSP results are for tensor and Waring ranks [Håstad’90].)

• Order-finding can be solved in average case in (quasi-)polynomial time.

• Approximation algorithms.

o ROABPwidth is hard to approximate up to any constant factor under SSE conjecture.

o Unconditionally, any constant approximation for ROABPwidth leads to a PTAS.

18

Open Questions

• Average-case algorithm.

o Polynomial time for constant individual degree?

Will require a different approach.

o Better dependence on domain-size.

Different argument that bypasses the union bound.

• Hardness of approximation.

• Is CutWidth hard to approximate up to a constant factor (without SSE)?

• Is ROABPwidth hard to approximate (for some other reason)?

19

Open Questions

• Average-case algorithm.

o Polynomial time for constant individual degree?

Will require a different approach.

o Better dependence on domain-size.

Different argument that bypasses the union bound.

• Hardness of approximation.

• Is CutWidth hard to approximate up to a constant factor (without SSE)?

• Is ROABPwidth hard to approximate (for some other reason)?

19

Thank you!

ABP-figure credits: Prerona Chatterjee

19

	The Question
	Read-once Oblivious ABPs

	Proof Ideas
	NP-hardness
	E-time worst-case algorithm
	Algorithm for the generic case

	Summary
	

