# Is there an Algebraic Natural Proofs Barrier? 

Anamay Tengse<br>Prerona Chatterjee, Mrinal Kumar, C. Ramya, Ramprasad Saptharishi

STCS Symposium
March 2021

Computing Polynomials

## Computing Polynomials

## $\begin{array}{lllllll}x_{1} & x_{2} & \cdots & x_{n} & a_{1} & \cdots & a_{r}\end{array}$

Variables Constants from $\mathbb{F}$

## Computing Polynomials



## Computing Polynomials



## Computing Polynomials



Algebraic Circuit for $f(\bar{x})$

## Computing Polynomials



## Computing Polynomials



Size( $C$ ): Number of gates

- Operations used by $C$

Size $(f)$ : Size of the smallest circuit for $f$

- Min operations to compute $f$

Algebraic Circuit for $f(\bar{x})$

## Computing Polynomials



Algebraic Circuit for $f(\bar{x})$

Size( $C$ ): Number of gates

- Operations used by $C$

Size $(f)$ : Size of the smallest circuit for $f$

- Min operations to compute $f$


## For this talk.

Variables: $n$, Degree: $d$, Polynomials with $d=\operatorname{poly}(n)$.

## Algebraic P vs NP [Val79]

- VP (efficiently computable polynomials):


## Algebraic P vs NP [Val79]

- VP (efficiently computable polynomials):
- Definition. $\left\{f_{n}\right\}$ with size $\left(f_{n}\right)=\operatorname{poly}(n)$.


## Algebraic P vs NP [Val79]

- VP (efficiently computable polynomials):
- Definition. $\left\{f_{n}\right\}$ with size $\left(f_{n}\right)=\operatorname{poly}(n)$.
- e.g.,

$$
\operatorname{Det}_{n}\left(\left\{x_{i, j}\right\}\right)=\sum_{\sigma \in s_{n}} \operatorname{sgn}(\sigma) x_{1, \sigma(1)} x_{2, \sigma(2)} \cdots x_{n, \sigma(n)}
$$

## Algebraic P vs NP [Val79]

- VP (efficiently computable polynomials):
- Definition. $\left\{f_{n}\right\}$ with size $\left(f_{n}\right)=\operatorname{poly}(n)$.
- e.g.,

$$
\operatorname{Det}_{n}\left(\left\{x_{i, j}\right\}\right)=\sum_{\sigma \in s_{n}} \operatorname{sgn}(\sigma) x_{1, \sigma(1)} x_{2, \sigma(2)} \cdots x_{n, \sigma(n)}
$$

- Random polynomial is hard (outside VP), but not "explicit".


## Algebraic P vs NP [Val79]

- VP (efficiently computable polynomials):
- Definition. $\left\{f_{n}\right\}$ with size $\left(f_{n}\right)=\operatorname{poly}(n)$.
- e.g.,

$$
\operatorname{Det}_{n}\left(\left\{x_{i, j}\right\}\right)=\sum_{\sigma \in s_{n}} \operatorname{sgn}(\sigma) x_{1, \sigma(1)} x_{2, \sigma(2)} \cdots x_{n, \sigma(n)}
$$

- Random polynomial is hard (outside VP), but not "explicit".
- VNP (efficiently definable polynomials):


## Algebraic P vs NP [Val79]

- VP (efficiently computable polynomials):
- Definition. $\left\{f_{n}\right\}$ with size $\left(f_{n}\right)=\operatorname{poly}(n)$.
- e.g.,

$$
\operatorname{Det}_{n}\left(\left\{x_{i, j}\right\}\right)=\sum_{\sigma \in s_{n}} \operatorname{sgn}(\sigma) x_{1, \sigma(1)} x_{2, \sigma(2)} \cdots x_{n, \sigma(n)}
$$

- Random polynomial is hard (outside VP), but not "explicit".
- VNP (efficiently definable polynomials):
- Criterion. $\left\{f_{n}\right\}$ s.t. coeff $f_{n}(m)$ is computable in time poly $(n)$ for any $m$.


## Algebraic P vs NP [Val79]

- VP (efficiently computable polynomials):
- Definition. $\left\{f_{n}\right\}$ with size $\left(f_{n}\right)=\operatorname{poly}(n)$.
- e.g.,

$$
\operatorname{Det}_{n}\left(\left\{x_{i, j}\right\}\right)=\sum_{\sigma \in s_{n}} \operatorname{sgn}(\sigma) x_{1, \sigma(1)} x_{2, \sigma(2)} \cdots x_{n, \sigma(n)}
$$

- Random polynomial is hard (outside VP), but not "explicit".
- VNP (efficiently definable polynomials):
- Criterion. $\left\{f_{n}\right\}$ s.t. coeff $f_{n}(m)$ is computable in time poly $(n)$ for any $m$.
- e.g.,

$$
\operatorname{Perm}_{n}\left(\left\{x_{i, j}\right\}\right)=\sum_{\sigma \in s_{n}} x_{1, \sigma(1)} x_{2, \sigma(2)} \cdots x_{n, \sigma(n)}
$$

## Algebraic P vs NP [Val79]

- VP (efficiently computable polynomials):
- Definition. $\left\{f_{n}\right\}$ with size $\left(f_{n}\right)=\operatorname{poly}(n)$.
- e.g.,

$$
\operatorname{Det}_{n}\left(\left\{x_{i, j}\right\}\right)=\sum_{\sigma \in s_{n}} \operatorname{sgn}(\sigma) x_{1, \sigma(1)} x_{2, \sigma(2)} \cdots x_{n, \sigma(n)}
$$

- Random polynomial is hard (outside VP), but not "explicit".
- VNP (efficiently definable polynomials):
- Criterion. $\left\{f_{n}\right\}$ s.t. coeff $f_{n}(m)$ is computable in time poly $(n)$ for any $m$.
- e.g.,

$$
\operatorname{Perm}_{n}\left(\left\{x_{i, j}\right\}\right)=\sum_{\sigma \in s_{n}} x_{1, \sigma(1)} x_{2, \sigma(2)} \cdots x_{n, \sigma(n)}
$$

Question. Is VP $=$ VNP?

## Some known hardness results

- Hardness Results for Structured Models:
- Homogeneous constant depth formulas (exponential hardness) [NW95,GKKS13,KS14, ...]
- Multilinear formulas (quasipolynomial hardness) [Raz09,DMPY12,...]
- Non-commutative formulas (exponential hardness) [Nis91,LMP16,...]
- Monotone circuits (exponential hardness) [Yeh19,Sri19]


## Some known hardness results

- Hardness Results for Structured Models:
- Homogeneous constant depth formulas (exponential hardness) [NW95,GKKS13,KS14,...]
- Multilinear formulas (quasipolynomial hardness) [Raz09,DMPY12,...]
- Non-commutative formulas (exponential hardness) [Nis91,LMP16,...]
- Monotone circuits (exponential hardness) [Yeh19,Sri19]

Formulas: Circuits where the underlying DAG is a tree.

## Some known hardness results

- Hardness Results for Structured Models:
- Homogeneous constant depth formulas (exponential hardness) [NW95,GKKS13,KS14,...]
- Multilinear formulas (quasipolynomial hardness) [Raz09,DMPY12,...]
- Non-commutative formulas (exponential hardness) [Nis91,LMP16,...]
- Monotone circuits (exponential hardness) [Yeh19,Sri19]

Formulas: Circuits where the underlying DAG is a tree.

- Best Hardness Result for Circuits: $\Theta(n \log d)$ [BS83,Smo97]
- Best Hardness Result for Formulas: $\Theta\left(n^{2}\right)$ [Kal85,CKSV20]


## Some known hardness results

- Hardness Results for Structured Models:
- Homogeneous constant depth formulas (exponential hardness) [NW95,GKKS13,KS14,...]
- Multilinear formulas (quasipolynomial hardness) [Raz09,DMPY12,...]
- Non-commutative formulas (exponential hardness) [Nis91,LMP16,...]
- Monotone circuits (exponential hardness) [Yeh19,Sri19]

Formulas: Circuits where the underlying DAG is a tree.

- Best Hardness Result for Circuits: $\Theta(n \log d)$ [BS83,Smo97]
- Best Hardness Result for Formulas: $\Theta\left(n^{2}\right)$ [Kal85,CKSV20]

Question. Are the "natural techniques" insufficient?

What are "natural techniques"?

|  | $U$ |
| :---: | :---: |
|  |  |
|  |  |
|  |  |

What are "natural techniques"?


## What are "natural techniques"?



Simples: Non-membership is difficult.

## What are "natural techniques"?



Simples: Non-membership is difficult.
Weaks: Non-membership is easy.

## What are "natural techniques"?



Simples: Non-membership is difficult. Weaks: Non-membership is easy. Easy weakness $\Rightarrow$ Something explicit should be non-weak.

## Natural techniques in action

## Warm-up



- $U$ - univariates of deg $\leq 3$ over $\mathbb{C}$.


## Natural techniques in action

## Warm-up



- $U$ - univariates of deg $\leq 3$ over $\mathbb{C}$.
$-\mathcal{C}=\left\{(\alpha y+\beta)^{3}: \alpha, \beta \in \mathbb{C}\right\}$.


## Natural techniques in action

## Warm-up



- $U$ - univariates of deg $\leq 3$ over $\mathbb{C}$.
$-\mathcal{C}=\left\{(\alpha y+\beta)^{3}: \alpha, \beta \in \mathbb{C}\right\}$.
$-(\alpha y+\beta)^{3}=\alpha^{3} y^{3}+3 \alpha^{2} \beta y^{2}+3 \alpha \beta^{2} y+\beta^{3}$.


## Natural techniques in action

## Warm-up



- $U$ - univariates of deg $\leq 3$ over $\mathbb{C}$.
$-\mathcal{C}=\left\{(\alpha y+\beta)^{3}: \alpha, \beta \in \mathbb{C}\right\}$.
$-(\alpha y+\beta)^{3}=\alpha^{3} y^{3}+3 \alpha^{2} \beta y^{2}+3 \alpha \beta^{2} y+\beta^{3}$.
- If $q(y) \equiv(a, b, c, d) \in \mathcal{C}$, then $P(a, b, c, d)=9 a d-b c=0$.


## Natural techniques in action

## Warm-up



- $U$ - univariates of deg $\leq 3$ over $\mathbb{C}$.
$-\mathcal{C}=\left\{(\alpha y+\beta)^{3}: \alpha, \beta \in \mathbb{C}\right\}$.
$-(\alpha y+\beta)^{3}=\alpha^{3} y^{3}+3 \alpha^{2} \beta y^{2}+3 \alpha \beta^{2} y+\beta^{3}$.
- If $q(y) \equiv(a, b, c, d) \in \mathcal{C}$, then $P(a, b, c, d)=9 a d-b c=0$.


## Natural techniques in action

## Warm-up



- $U$ - univariates of deg $\leq 3$ over $\mathbb{C}$.
$-\mathcal{C}=\left\{(\alpha y+\beta)^{3}: \alpha, \beta \in \mathbb{C}\right\}$.
$-(\alpha y+\beta)^{3}=\alpha^{3} y^{3}+3 \alpha^{2} \beta y^{2}+3 \alpha \beta^{2} y+\beta^{3}$.
- If $q(y) \equiv(a, b, c, d) \in \mathcal{C}$, then $P(a, b, c, d)=9 a d-b c=0$.


## Natural techniques in action

## Warm-up

Algebraic Natural Proofs [FSV18,GKSS17]


- $U$ - univariates of deg $\leq 3$ over $\mathbb{C}$.
$-\mathcal{C}=\left\{(\alpha y+\beta)^{3}: \alpha, \beta \in \mathbb{C}\right\}$.
$-(\alpha y+\beta)^{3}=\alpha^{3} y^{3}+3 \alpha^{2} \beta y^{2}+3 \alpha \beta^{2} y+\beta^{3}$.
- If $q(y) \equiv(a, b, c, d) \in \mathcal{C}$, then $P(a, b, c, d)=9 a d-b c=0$.


## Natural techniques in action

## Warm-up

Algebraic Natural Proofs [FSV18,GKSS17]

- $U$ - univariates of deg $\leq 3$ over $\mathbb{C}$.
$-\mathcal{C}=\left\{(\alpha y+\beta)^{3}: \alpha, \beta \in \mathbb{C}\right\}$.
$-(\alpha y+\beta)^{3}=\alpha^{3} y^{3}+3 \alpha^{2} \beta y^{2}+3 \alpha \beta^{2} y+\beta^{3}$.
- If $q(y) \equiv(a, b, c, d) \in \mathcal{C}$, then $P(a, b, c, d)=9 a d-b c=0$.
$\square$
- $U$ - $n$-variates of $\operatorname{deg} \leq d, N=\binom{n+d}{d}$.


## Natural techniques in action

## Warm-up

## Algebraic Natural Proofs

 [FSV18,GKSS17]

- $U$ - univariates of deg $\leq 3$ over $\mathbb{C}$.
$-\mathcal{C}=\left\{(\alpha y+\beta)^{3}: \alpha, \beta \in \mathbb{C}\right\}$.
$-(\alpha y+\beta)^{3}=\alpha^{3} y^{3}+3 \alpha^{2} \beta y^{2}+3 \alpha \beta^{2} y+\beta^{3}$.
- If $q(y) \equiv(a, b, c, d) \in \mathcal{C}$, then $P(a, b, c, d)=9 a d-b c=0$.

- $U$ - $n$-variates of deg $\leq d, N=\binom{n+d}{d}$.
$-\mathcal{C}=\mathrm{VP}(n)$.


## Natural techniques in action

## Warm-up

## Algebraic Natural Proofs

 [FSV18,GKSS17]

- $U$ - univariates of deg $\leq 3$ over $\mathbb{C}$.
$-\mathcal{C}=\left\{(\alpha y+\beta)^{3}: \alpha, \beta \in \mathbb{C}\right\}$.
$-(\alpha y+\beta)^{3}=\alpha^{3} y^{3}+3 \alpha^{2} \beta y^{2}+3 \alpha \beta^{2} y+\beta^{3}$.
- If $q(y) \equiv(a, b, c, d) \in \mathcal{C}$, then $P(a, b, c, d)=9 a d-b c=0$.

- $U$ - $n$-variates of deg $\leq d, N=\binom{n+d}{d}$.
$-\mathcal{C}=\mathrm{VP}(n)$.
- $\mathcal{D}=\operatorname{VNP}(n)$.


## Natural techniques in action

## Warm-up

## Algebraic Natural Proofs

 [FSV18,GKSS17]

- $U$ - univariates of deg $\leq 3$ over $\mathbb{C}$.
$-\mathcal{C}=\left\{(\alpha y+\beta)^{3}: \alpha, \beta \in \mathbb{C}\right\}$.
$-(\alpha y+\beta)^{3}=\alpha^{3} y^{3}+3 \alpha^{2} \beta y^{2}+3 \alpha \beta^{2} y+\beta^{3}$.
- If $q(y) \equiv(a, b, c, d) \in \mathcal{C}$, then $P(a, b, c, d)=9 a d-b c=0$.

- $U$ - $n$-variates of deg $\leq d, N=\binom{n+d}{d}$.
$-\mathcal{C}=\mathrm{VP}(n)$.
- $\mathcal{D}=\operatorname{VNP}(n)$.
- Is there a "simple" $P\left(Z_{1}, \ldots, Z_{N}\right)$ s.t. $P(\bar{f})=0$ for all $f \in \operatorname{VP}(n) ?$


## Natural techniques in action

## Warm-up

Algebraic Natural Proofs [FSV18,GKSS17]


- $U$ - univariates of deg $\leq 3$ over $\mathbb{C}$.
$-\mathcal{C}=\left\{(\alpha y+\beta)^{3}: \alpha, \beta \in \mathbb{C}\right\}$.
$-(\alpha y+\beta)^{3}=\alpha^{3} y^{3}+3 \alpha^{2} \beta y^{2}+3 \alpha \beta^{2} y+\beta^{3}$.
- If $q(y) \equiv(a, b, c, d) \in \mathcal{C}$, then $P(a, b, c, d)=9 a d-b c=0$.

- $U$ - $n$-variates of deg $\leq d, N=\binom{n+d}{d}$.
$-\mathcal{C}=\mathrm{VP}(n)$.
- $\mathcal{D}=\operatorname{VNP}(n)$.
- Is there a $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$ s.t.
$P(\bar{f})=0$ for all $f \in \operatorname{VP}(n) ?$


## Algebraic Natural Proofs [FSV18,GKSS17]

Definition (Natural Proof for $\mathcal{C}$ )
For $n, d \in \mathbb{N}, N=\binom{n+d}{d}$, and $\mathcal{C}(n, d) \subseteq \mathbb{C}^{N}$,

## Algebraic Natural Proofs [FSV18,GKSS17]

Definition (Natural Proof for $\mathcal{C}$ )
For $n, d \in \mathbb{N}, N=\binom{n+d}{d}$, and $\mathcal{C}(n, d) \subseteq \mathbb{C}^{N}$,
a nonzero $P\left(Z_{1}, \ldots, Z_{N}\right)$ is a VP-natural proof for $\mathcal{C}(n, d)$, if:

- $P(\bar{f})=0$ for all $f \in \mathcal{C}$,
- $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$.


## Algebraic Natural Proofs [FSV18,GKSS17]

Definition (Natural Proof for $\mathcal{C}$ )
For $n, d \in \mathbb{N}, N=\binom{n+d}{d}$, and $\mathcal{C}(n, d) \subseteq \mathbb{C}^{N}$,
a nonzero $P\left(Z_{1}, \ldots, Z_{N}\right)$ is a VP-natural proof for $\mathcal{C}(n, d)$, if:

- $P(\bar{f})=0$ for all $f \in \mathcal{C}$,
- $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$.

Best Case Scenario: There exists a $P \in \operatorname{VP}(N)$ vanishing on $\operatorname{VP}(n)$, but not on $\operatorname{VNP}(n)$.

## Algebraic Natural Proofs [FSV18,GKSS17]

## Definition (Natural Proof for $\mathcal{C}$ )

For $n, d \in \mathbb{N}, N=\binom{n+d}{d}$, and $\mathcal{C}(n, d) \subseteq \mathbb{C}^{N}$,
a nonzero $P\left(Z_{1}, \ldots, Z_{N}\right)$ is a VP-natural proof for $\mathcal{C}(n, d)$, if:

- $P(\bar{f})=0$ for all $f \in \mathcal{C}$,
- $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$.

Best Case Scenario: There exists a $P \in \operatorname{VP}(N)$ vanishing on $\operatorname{VP}(n)$, but not on $\operatorname{VNP}(n)$.
Barrier: No $P \in \operatorname{VP}(N)$ witnesses the separation of $\operatorname{VP}(n)$ and $\operatorname{VNP}(n)$. $\equiv$ "Natural techniques" cannot prove VP $\neq \mathrm{VNP}$.

## Algebraic natural proofs barrier?

## Algebraic natural proofs barrier?

- (Boolean) natural proofs [RR97]:
- If One-Way-Functions (OWFs) exist, then no natural proofs for $\mathrm{P} /$ poly.


## Algebraic natural proofs barrier?

- (Boolean) natural proofs [RR97]:
- If One-Way-Functions (OWFs) exist, then no natural proofs for $\mathrm{P} /$ poly.
- Existence of OWFs is widely believed and heavily used in modern cryptography.


## Algebraic natural proofs barrier?

- (Boolean) natural proofs [RR97]:
- If One-Way-Functions (OWFs) exist, then no natural proofs for $\mathrm{P} /$ poly.
- Existence of OWFs is widely believed and heavily used in modern cryptography.
- Algebraic natural proofs [FSV18,GKSS17]:
- If $\mathrm{VP}(n)$ has poly $\log (n)$-succinct hitting sets, then no natural proofs for VP.


## Algebraic natural proofs barrier?

- (Boolean) natural proofs [RR97]:
- If One-Way-Functions (OWFs) exist, then no natural proofs for $\mathrm{P} /$ poly.
- Existence of OWFs is widely believed and heavily used in modern cryptography.
- Algebraic natural proofs [FSV18,GKSS17]:
- If VP $(n)$ has poly $\log (n)$-succinct hitting sets, then no natural proofs for VP.
- Succinct hitting sets are not well-studied.


## Algebraic natural proofs barrier?

- (Boolean) natural proofs [RR97]:
- If One-Way-Functions (OWFs) exist, then no natural proofs for $\mathrm{P} /$ poly.
- Existence of OWFs is widely believed and heavily used in modern cryptography.
- Algebraic natural proofs [FSV18,GKSS17]:
- If VP $(n)$ has poly $\log (n)$-succinct hitting sets, then no natural proofs for VP.
- Succinct hitting sets are not well-studied.
- Explicit succinct hitting sets [FSV18]:
- $\Sigma \Pi \Sigma($ poly $\log (n))$-succinct hitting sets against weak classes (depth-3-powering,...).


## Algebraic natural proofs barrier?

- (Boolean) natural proofs [RR97]:
- If One-Way-Functions (OWFs) exist, then no natural proofs for $\mathrm{P} /$ poly.
- Existence of OWFs is widely believed and heavily used in modern cryptography.
- Algebraic natural proofs [FSV18,GKSS17]:
- If VP $(n)$ has poly $\log (n)$-succinct hitting sets, then no natural proofs for VP.
- Succinct hitting sets are not well-studied.
- Explicit succinct hitting sets [FSV18]:
- $\Sigma \Pi \Sigma($ poly $\log (n))$-succinct hitting sets against weak classes (depth-3-powering,...).
- Weak evidence for $\mathrm{VP}(n)$ having poly $\log (n)$-succinct hitting sets.


## Our results

Dream. There is a $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$ s.t.

- $P(\bar{f})=0$ for all $f \in \operatorname{VP}(n)$,
- $P(\bar{h}) \neq 0$ for some $h \in \operatorname{VNP}(n)$.


## Our results

Dream. There is a $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$ s.t.

- $P(\bar{f})=0$ for all $f \in \operatorname{VP}(n)$,
- $P(\bar{h}) \neq 0$ for some $h \in \operatorname{VNP}(n)$.


## Our Results.

- [Chatterjee-Kumar-Ramya-Saptharishi-T 2020]:

Let $V P^{\prime}$ be the polynomials in VP that additionally have $\{-1,0,1\}$ coefficients. There exists $P\left(Z_{1}, \ldots, Z_{N}\right)$ such that $P(\bar{f})=0$ for all $f \in \mathrm{VP}^{\prime}(n)$.

## Our results

Dream. There is a $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$ s.t.

- $P(\bar{f})=0$ for all $f \in \operatorname{VP}(n)$,
- $P(\bar{h}) \neq 0$ for some $h \in \operatorname{VNP}(n)$.


## Our Results.

- [Chatterjee-Kumar-Ramya-Saptharishi-T 2020]:

Let $V P^{\prime}$ be the polynomials in VP that additionally have $\{-1,0,1\}$ coefficients. There exists $P\left(Z_{1}, \ldots, Z_{N}\right)$ such that $P(\bar{f})=0$ for all $f \in \mathrm{VP}^{\prime}(n)$.

- [Kumar-Ramya-Saptharishi-T 2020]:

Suppose the Permanent is $2^{n^{\epsilon}}$-hard for constant $\epsilon>0$.
Then, if $Q\left(Z_{1}, \ldots, Z_{N}\right)$ is such that $Q(\bar{h})=0$ for all $h \in \operatorname{VNP}^{\prime}(n)$, then $Q\left(Z_{1}, \ldots, Z_{N}\right)$ is $N^{\omega(1)}$-hard.

## Proofs for "interesting" polynomials

## Theorem [CKRST'20]

For all large $n, d$ and $N=\binom{n+d}{d}$, there exists a $P\left(Z_{1}, \ldots, Z_{N}\right)$ s.t.

- $P(\bar{f})=0$ for all $f \in \operatorname{VP}(n)$ with coefficients in $\{-1,0,1\}$,
- $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$,


## Proofs for "interesting" polynomials

## Theorem [CKRST'20]

For all large $n, d$ and $N=\binom{n+d}{d}$, there exists a $P\left(Z_{1}, \ldots, Z_{N}\right)$ s.t.

- $P(\bar{f})=0$ for all $f \in \operatorname{VP}(n)$ with coefficients in $\{-1,0,1\}$,
- $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$,
- $P(\bar{h}) \neq 0$ for many $h$ with $\{-1,0,1\}$-coefficients.


## Proofs for "interesting" polynomials

## Theorem [CKRST'20]

For all large $n, d$ and $N=\binom{n+d}{d}$, there exists a $P\left(Z_{1}, \ldots, Z_{N}\right)$ s.t.

- $P(\bar{f})=0$ for all $f \in \operatorname{VP}(n)$ with coefficients in $\{-1,0,1\}$,
- $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$,
- $P(\bar{h}) \neq 0$ for many $h$ with $\{-1,0,1\}$-coefficients.
- Almost all well-studied polynomials ( $\operatorname{Det}_{n}, \operatorname{Perm}_{n}, \ldots$ ) have $\{-1,0,1\}$ coefficients.


## Proofs for "interesting" polynomials

## Theorem [CKRST'20]

For all large $n, d$ and $N=\binom{n+d}{d}$, there exists a $P\left(Z_{1}, \ldots, Z_{N}\right)$ s.t.

- $P(\bar{f})=0$ for all $f \in \operatorname{VP}(n)$ with coefficients in $\{-1,0,1\}$,
- $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$,
- $P(\bar{h}) \neq 0$ for many $h$ with $\{-1,0,1\}$-coefficients.
- Almost all well-studied polynomials ( $\operatorname{Det}_{n}, \operatorname{Perm}_{n}, \ldots$ ) have $\{-1,0,1\}$ coefficients.
- Note. Such an equation could possibly prove $\operatorname{Perm}_{n} \notin \mathrm{VP}(n)$.


## Proofs for "interesting" polynomials

## Theorem [CKRST'20]

For all large $n, d$ and $N=\binom{n+d}{d}$, there exists a $P\left(Z_{1}, \ldots, Z_{N}\right)$ s.t.

- $P(\bar{f})=0$ for all $f \in \operatorname{VP}(n)$ with coefficients in $\{-1,0,1\}$,
- $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$,
- $P(\bar{h}) \neq 0$ for many $h$ with $\{-1,0,1\}$-coefficients.
- Almost all well-studied polynomials ( $\operatorname{Det}_{n}, \operatorname{Perm}_{n}, \ldots$ ) have $\{-1,0,1\}$ coefficients.
- Note. Such an equation could possibly prove $\operatorname{Perm}_{n} \notin \mathrm{VP}(n)$.
* Similar result also holds for $\mathrm{VNP}^{\prime}$.


## Proofs for "interesting" polynomials

## Theorem [CKRST'20]

For all large $n, d$ and $N=\binom{n+d}{d}$, there exists a $P\left(Z_{1}, \ldots, Z_{N}\right)$ s.t.

- $P(\bar{f})=0$ for all $f \in \operatorname{VP}(n)$ with coefficients in $\{-1,0,1\}$,
- $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$,
- $P(\bar{h}) \neq 0$ for many $h$ with $\{-1,0,1\}$-coefficients.
- Almost all well-studied polynomials ( $\operatorname{Det}_{n}, \operatorname{Perm}_{n}, \ldots$ ) have $\{-1,0,1\}$ coefficients.
- Note. Such an equation could possibly prove $\operatorname{Perm}_{n} \notin \mathrm{VP}(n)$.
* Similar result also holds for $\mathrm{VNP}^{\prime}$.

Idea. Hitting sets for $\mathcal{C}$ give natural proofs for $\mathcal{C}^{\prime}$.

## Algebraic natural proofs for VNP

Theorem [KRST'20]
Suppose Perm $m$ is $2^{m^{\epsilon}}$-hard for a constant $\epsilon>0$.
Then for some $n, d=\operatorname{poly}(m)$, and $N=\binom{n+d}{d}$,

## Algebraic natural proofs for VNP

## Theorem [KRST'20]

Suppose Perm $m$ is $2^{m^{\epsilon}}$-hard for a constant $\epsilon>0$.
Then for some $n, d=\operatorname{poly}(m)$, and $N=\binom{n+d}{d}$,
if $Q\left(Z_{1}, \ldots, Z_{N}\right)$ is such that $Q(\bar{h})=0$ for all $h \in \operatorname{VNP}(n)$, then $\operatorname{size}(Q)=N^{\omega(1)}$.

## Algebraic natural proofs for VNP

## Theorem [KRST'20]

Suppose Perm $m$ is $2^{m^{\epsilon}}$-hard for a constant $\epsilon>0$.
Then for some $n, d=\operatorname{poly}(m)$, and $N=\binom{n+d}{d}$,
if $Q\left(Z_{1}, \ldots, Z_{N}\right)$ is such that $Q(\bar{h})=0$ for all $h \in \operatorname{VNP}(n)$, then $\operatorname{size}(Q)=N^{\omega(1)}$.

Message. Essentially no natural proofs for VNP!

## Algebraic natural proofs for VNP

## Theorem [KRST'20]

Suppose Perm $m$ is $2^{m^{\epsilon}}$-hard for a constant $\epsilon>0$.
Then for some $n, d=\operatorname{poly}(m)$, and $N=\binom{n+d}{d}$,
if $Q\left(Z_{1}, \ldots, Z_{N}\right)$ is such that $Q(\bar{h})=0$ for all $h \in \operatorname{VNP}(n)$,
then $\operatorname{size}(Q)=N^{\omega(1)}$.
Message. Essentially no natural proofs for VNP!

* Restriction on coefficients is crucial for existence of easy proofs, for VNP.


## Algebraic natural proofs for VNP

## Theorem [KRST'20]

Suppose Perm $m$ is $2^{m^{\epsilon}}$-hard for a constant $\epsilon>0$.
Then for some $n, d=\operatorname{poly}(m)$, and $N=\binom{n+d}{d}$,
if $Q\left(Z_{1}, \ldots, Z_{N}\right)$ is such that $Q(\bar{h})=0$ for all $h \in \operatorname{VNP}(n)$, then $\operatorname{size}(Q)=N^{\omega(1)}$.

Message. Essentially no natural proofs for VNP!

* Restriction on coefficients is crucial for existence of easy proofs, for VNP.

Idea. The Kabanets-Impagliazzo generator [KIO4] can be made VNP-succinct.

## What all this means...

In the context of $\operatorname{VP}(N)$-natural proofs for $\operatorname{VP}(n)$ :

## What all this means...

In the context of $\operatorname{VP}(N)$-natural proofs for $\operatorname{VP}(n)$ :

- Believers. There is a natural separation between VP and VNP!
- Any natural proof for VP( $n$ ) separates VP and VNP.
- Prove existence of natural proofs for VP (using standard assumptions)?


## What all this means...

In the context of $\operatorname{VP}(N)$-natural proofs for $\operatorname{VP}(n)$ :

- Believers. There is a natural separation between VP and VNP!
- Any natural proof for VP( $n$ ) separates VP and VNP.
- Prove existence of natural proofs for VP (using standard assumptions)?
- Skeptics. Pseudorandomness of VP must come from large coefficients.
- Our proof [KRST20] seems to require the power of VNP.
- Prove non-existence of natural proofs for VP (using standard assumptions)?


## What all this means...

In the context of $\mathrm{VP}(N)$-natural proofs for $\mathrm{VP}(n)$ :

- Believers. There is a natural separation between VP and VNP!
- Any natural proof for VP $(n)$ separates VP and VNP.
- Prove existence of natural proofs for VP (using standard assumptions)?
- Skeptics. Pseudorandomness of VP must come from large coefficients.
- Our proof [KRST20] seems to require the power of VNP.
- Prove non-existence of natural proofs for VP (using standard assumptions)?
- Undecided. The natural proofs question for VP seems quite interesting. :)


## Thank You

Webpage: anamay.bitbucket.io

## Formal statement of [CKRST'20]

$\exists$ a collection $\mathcal{P}$ of proof families such that, $\forall$ degree functions $d(n)=\operatorname{poly}(n)$, the proof family $\left\{P_{N(n)}\right\}=\mathcal{P}(d(n))$ is of $N(n)=\binom{n+d(n)}{n}$ variate polynomials, and $\forall$ size functions $s(n)=\operatorname{poly}(n), \exists n_{0}$ such that $\forall n>n_{0}$, the polynomial $P_{N(n)}$ vanishes on $\operatorname{Ckt}^{\prime}(n, d(n), s(n))$.

## Formal statement of [KRST'20]

The polynomial Perm $m$ requires size $>2^{m^{\varepsilon}}$, for infinitely many $m$.
$\exists$ a collection of families of polynomials $\mathcal{H} \subseteq \operatorname{VNP}\left(n^{c}\right)$, such that the collection $\mathcal{H}(n)$ is a hitting set for $V P_{N}$ where $N=\binom{n+n^{c}}{n}$.

## Formal statement of [KRST'20]

The polynomial Perm $m$ requires size $>2^{m^{\epsilon}}$, for infinitely many $m$.
$\exists$ a collection of families of polynomials $\mathcal{H} \subseteq \operatorname{VNP}\left(n^{c}\right)$, such that for all degree and size functions $d(N), s(N)=\operatorname{poly}(N)$, there exists an $m_{0}$, such that if for some $m>m_{0}$, Perm $_{m}$ requires size $>2^{m^{\varepsilon}}$, then for $n(m)=\operatorname{poly}(m), d=n^{c}$, the collection of polynomials $H_{n(m)} \subseteq \operatorname{VNP}_{n(m)}\left(n^{c}\right)$ is a hitting set for the collection $V P_{N}(d(N), s(N))$ for $N(n)=\binom{n+n^{c}}{n}$.

