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Computing Polynomials

f(x) € F[x]

Size(C): Number of gates
- Operations used by C

Q Size(f): Size of the smallest circuit for
/(_D\ - Min operations to compute f

For this talk.

1 N N ‘ Variables: n, Degree: d,

X1 Xp ... X a --- ar
" Polynomials with d = poly(n).

Algebraic Circuit for f(x)
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> VP (efficiently computable polynomials):
» Definition. {f,} with size(f,) = poly(n).
> eg.,
Detn({xi;}) = a; s8N (0)X1,0(1)%2,0(2) ** Xno(n)

» Random polynomial is hard (outside VP), but not “explicit”.

> VNP (efficiently polynomials):

» Criterion. {fy} s.t. coeffs (m) is computable in time poly(n) for any m.

> eg,
Permn({xij}) = ) X1.0(1)2.0(2) " Xno(n)

oEs,

Question. Is VP = VNP?
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Question. Are the “natural techniques” insufficient?
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U

Universe

Simples: Non-membership is difficult. Weaks: Non-membership is easy.

Easy weakness = Something explicit should be non-weak.
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[FSV18,GKSS17]

P P(F)=0

u=cV
- U - n-variates of deg < d, N = (”Jgd).
- C =VP(n).
_ D = VNP(n).

- Is there a P(Z1,. .., Zy) € VP(N) s.t.

P(f) =0 for all f € VP(n)?
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Definition (Natural Proof for C)

For n,d € N, N = ("}9), and C(n,d) C CV,
a nonzero P(Zy,...,Zy) is a VP-natural proof for C(n, d), if:

> P(f)=0forall f €C,
> P(Zl ..... ZN) € VP(N).

Best Case Scenario: There exists a P € VP(N) on VP(n), but on VNP(n).

Barrier: No P € VP(N) witnesses the separation of VP(n) and VNP(n).
= “Natural techniques” cannot prove VP # VNP.
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» (Boolean) natural proofs [RR97]:

> If One-Way-Functions (OWFs) exist, then no natural proofs for P/ poly.
» Existence of OWFs is widely believed and heavily used in modern cryptography.

» Algebraic natural proofs [FSV18,GKSS17]:
> If VP(n) has poly log(n)-succinct hitting sets, then no natural proofs for VP.

P Succinct hitting sets are not well-studied.

» Explicit succinct hitting sets [FSV18]:

> XIIx(poly log(n))-succinct hitting sets against weak classes (depth-3-powering,...).
> Weak evidence for VP (n) having poly log(n)-succinct hitting sets.
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Our Results.
» [Chatterjee-Kumar-Ramya-Saptharishi-T 2020]:
Let be the polynomials in VP that additionally have
There exists P(Z1, ..., Zy) such that P(f) =0 for all f € VP'(n).

» [Kumar-Ramya-Saptharishi-T 2020]:
Suppose the Permanent is 2" -hard for constant € > 0.
Then, if Q(Z1,...,2Zy) is such that Q(h) = 0 for all h € VNP'(n),
then Q(Zy,..., Zy) is N hard.
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Theorem [CKRST'20]

For all large n,d and N = ("Jgd), there exists a P(Z1,...,Zy) st
» P(f) =0 for all f € VP(n) with coefficients in {—1,0,1},
> P(Z1,.... Zn) € VP(N),
» P(h) # 0 for many h with {—1,0, 1}-coefficients.

- Almost all well-studied polynomials (Det,,, Perm,, ...) have {—1, 0, 1} coefficients.

- Note. Such an equation could possibly prove Perm, & VP(n).

* Similar result also holds for VNP'.

Idea. Hitting sets for C give natural proofs for C’.
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Theorem [KRST'20]

Suppose Perm,, is 2™ -hard for a constant € > 0.

Then for some n, d = poly(m), and N = (”Zd),

if Q(Zy,..., Zy) is such that Q(h) = 0 for all h € VNP(n),
then size(Q) = N@(1),

Message. Essentially no natural proofs for VNP!

* Restriction on coefficients is crucial for existence of easy proofs, for VNP.

Idea. The Kabanets-Impagliazzo generator [KI04] can be made VNP-succinct.
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» Believers. There is a natural separation between VP and VNP!
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» Skeptics. Pseudorandomness of VP must come from large coefficients.
- Our proof [KRST20] seems to require the power of VNP.
- Prove non-existence of natural proofs for VP (using standard assumptions)?

» Undecided. The natural proofs question for VP seems quite interesting. :)



Thank You

Webpage: anamay.bitbucket.io
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3 a collection P of proof families such that,
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Formal statement of [KRST'20]

The polynomial Perm,, requires size > 2 for infinitely many m.

3 a collection of families of polynomials 7 C VNP (n®), such that

for all degree and size functions , there exists an mg, such that
if for some m > mg, Perm,, requires size > om°,

then for n(m) = poly(m), d = n°, the collection of polynomials H,,,) C VNP (n°)

is a hitting set for the collection for N(n) = (”J;”C).



