Is there an Algebraic Natural Proofs Barrier?

Anamay Tengse

Prerona Chatterjee, Mrinal Kumar, C. Ramya, Ramprasad Saptharishi

STCS Symposium

March 2021

 $x_1 \quad x_2 \quad \dots \quad x_n \quad a_1 \quad \dots \quad a_r$ Variables Constants from $\mathbb F$

- Size(*C*): Number of *gates*
- Operations used by \boldsymbol{C}

Size(*C*): Number of *gates*

- Operations used by \boldsymbol{C}

Size(f): Size of the smallest circuit for f

- Min operations to compute f

Size(*C*): Number of *gates*

- Operations used by \boldsymbol{C}

Size(f): Size of the smallest circuit for f

- Min operations to compute f

For this talk.

Variables: *n*, Degree: *d*, Polynomials with d = poly(n).

VP (efficiently computable polynomials):

VP (efficiently computable polynomials):

Definition. $\{f_n\}$ with size $(f_n) = poly(n)$.

VP (efficiently computable polynomials):

Definition. $\{f_n\}$ with size $(f_n) = poly(n)$.

► e.g.,

$$\mathsf{Det}_n(\{x_{i,j}\}) = \sum_{\sigma \in s_n} \mathsf{sgn}(\sigma) x_{1,\sigma(1)} x_{2,\sigma(2)} \cdots x_{n,\sigma(n)}$$

- VP (efficiently computable polynomials):
 - **Definition.** $\{f_n\}$ with size $(f_n) = poly(n)$.

► e.g.,

$$\mathsf{Det}_n(\{x_{i,j}\}) = \sum_{\sigma \in s_n} \mathsf{sgn}(\sigma) x_{1,\sigma(1)} x_{2,\sigma(2)} \cdots x_{n,\sigma(n)}$$

Random polynomial is hard (outside VP), but not "explicit".

- VP (efficiently computable polynomials):
 - **Definition.** $\{f_n\}$ with size $(f_n) = poly(n)$.

▶ e.g.,

$$\mathsf{Det}_n(\{x_{i,j}\}) = \sum_{\sigma \in s_n} \mathsf{sgn}(\sigma) x_{1,\sigma(1)} x_{2,\sigma(2)} \cdots x_{n,\sigma(n)}$$

Random polynomial is hard (outside VP), but not "explicit".

VNP (efficiently definable polynomials):

- VP (efficiently computable polynomials):
 - **Definition.** $\{f_n\}$ with size $(f_n) = poly(n)$.

▶ e.g.,

$$\mathsf{Det}_n(\{x_{i,j}\}) = \sum_{\sigma \in s_n} \mathsf{sgn}(\sigma) x_{1,\sigma(1)} x_{2,\sigma(2)} \cdots x_{n,\sigma(n)}$$

Random polynomial is hard (outside VP), but not "explicit".

- VNP (efficiently definable polynomials):
 - **Criterion.** $\{f_n\}$ s.t. coeff_{f_n}(m) is computable in time poly(n) for any m.

- VP (efficiently computable polynomials):
 - **Definition.** $\{f_n\}$ with size $(f_n) = poly(n)$.

▶ e.g.,

$$\mathsf{Det}_n(\{x_{i,j}\}) = \sum_{\sigma \in s_n} \mathsf{sgn}(\sigma) x_{1,\sigma(1)} x_{2,\sigma(2)} \cdots x_{n,\sigma(n)}$$

Random polynomial is hard (outside VP), but not "explicit".

- VNP (efficiently definable polynomials):
 - **Criterion.** $\{f_n\}$ s.t. coeff_{f_n}(m) is computable in time poly(n) for any m.

$$\operatorname{Perm}_{n}(\{x_{i,j}\}) = \sum_{\sigma \in s_{n}} x_{1,\sigma(1)} x_{2,\sigma(2)} \cdots x_{n,\sigma(n)}$$

- VP (efficiently computable polynomials):
 - **Definition.** $\{f_n\}$ with size $(f_n) = poly(n)$.

▶ e.g.,

$$\mathsf{Det}_n(\{x_{i,j}\}) = \sum_{\sigma \in s_n} \mathsf{sgn}(\sigma) x_{1,\sigma(1)} x_{2,\sigma(2)} \cdots x_{n,\sigma(n)}$$

Random polynomial is hard (outside VP), but not "explicit".

- VNP (efficiently definable polynomials):
 - **Criterion.** $\{f_n\}$ s.t. coeff_{f_n}(m) is computable in time poly(n) for any m.

▶ e.g.,

$$\operatorname{Perm}_{n}(\{x_{i,j}\}) = \sum_{\sigma \in s_{n}} x_{1,\sigma(1)} x_{2,\sigma(2)} \cdots x_{n,\sigma(n)}$$

Question. Is VP = VNP?

- Hardness Results for Structured Models:
 - ▶ Homogeneous constant depth formulas (exponential hardness) [NW95,GKKS13,KS14,...]
 - Multilinear formulas (quasipolynomial hardness) [Raz09,DMPY12,...]
 - ▶ Non-commutative formulas (exponential hardness) [Nis91,LMP16,...]
 - Monotone circuits (exponential hardness) [Yeh19,Sri19]

- Hardness Results for Structured Models:
 - Homogeneous constant depth formulas (exponential hardness) [NW95,GKKS13,KS14,...]
 - Multilinear formulas (quasipolynomial hardness) [Raz09,DMPY12,...]
 - ▶ Non-commutative formulas (exponential hardness) [Nis91,LMP16,...]
 - Monotone circuits (exponential hardness) [Yeh19,Sri19]

Formulas: Circuits where the underlying DAG is a tree.

- Hardness Results for Structured Models:
 - Homogeneous constant depth formulas (exponential hardness) [NW95,GKKS13,KS14,...]
 - Multilinear formulas (quasipolynomial hardness) [Raz09,DMPY12,...]
 - Non-commutative formulas (exponential hardness) [Nis91,LMP16,...]
 - Monotone circuits (exponential hardness) [Yeh19,Sri19]

Formulas: Circuits where the underlying DAG is a tree.

- ▶ Best Hardness Result for Circuits: $\Theta(n \log d)$ [BS83,Smo97]
- ▶ Best Hardness Result for Formulas: $\Theta(n^2)$ [Kal85,CKSV20]

- Hardness Results for Structured Models:
 - Homogeneous constant depth formulas (exponential hardness) [NW95,GKKS13,KS14,...]
 - Multilinear formulas (quasipolynomial hardness) [Raz09,DMPY12,...]
 - Non-commutative formulas (exponential hardness) [Nis91,LMP16,...]
 - Monotone circuits (exponential hardness) [Yeh19,Sri19]

Formulas: Circuits where the underlying DAG is a tree.

- ▶ Best Hardness Result for Circuits: $\Theta(n \log d)$ [BS83,Smo97]
- ▶ Best Hardness Result for Formulas: $\Theta(n^2)$ [Kal85,CKSV20]

Question. Are the "natural techniques" insufficient?

Simples: Non-membership is difficult.

Simples: Non-membership is difficult. Weaks: Non-membership is easy.

Simples: Non-membership is difficult.Weaks: Non-membership is easy.Easy weakness \Rightarrow Something explicit should be non-weak.

Warm-up

- U - univariates of deg \leq 3 over \mathbb{C} .

Warm-up

- *U* - univariates of deg \leq 3 over \mathbb{C} . - $\mathcal{C} = \{(\alpha y + \beta)^3 : \alpha, \beta \in \mathbb{C}\}.$

Warm-up

- *U* - univariates of deg ≤ 3 over \mathbb{C} . - $\mathcal{C} = \{(\alpha y + \beta)^3 : \alpha, \beta \in \mathbb{C}\}.$ - $(\alpha y + \beta)^3 = \alpha^3 y^3 + 3\alpha^2 \beta y^2 + 3\alpha \beta^2 y + \beta^3.$

Warm-up

Warm-up

Warm-up

Warm-up

Algebraic Natural Proofs [FSV18,GKSS17]

- *U* - univariates of deg
$$\leq 3$$
 over \mathbb{C} .
- $\mathcal{C} = \{(\alpha y + \beta)^3 : \alpha, \beta \in \mathbb{C}\}.$
- $(\alpha y + \beta)^3 = \alpha^3 y^3 + 3\alpha^2 \beta y^2 + 3\alpha \beta^2 y + \beta^3.$
- If $q(y) \equiv (a, b, c, d) \in \mathcal{C}$,
then $P(a, b, c, d) = 9ad - bc = 0.$

-
$$U$$
 - n -variates of deg $\leq d$, $N = \binom{n+d}{d}$.

Warm-up

- *U* - univariates of deg
$$\leq 3$$
 over \mathbb{C} .
- $\mathcal{C} = \{(\alpha y + \beta)^3 : \alpha, \beta \in \mathbb{C}\}.$
- $(\alpha y + \beta)^3 = \alpha^3 y^3 + 3\alpha^2 \beta y^2 + 3\alpha \beta^2 y + \beta^3.$
- If $q(y) \equiv (a, b, c, d) \in \mathcal{C}$,
then $P(a, b, c, d) = 9ad - bc = 0.$

-
$$U$$
 - n -variates of deg $\leq d$, $N = \binom{n+d}{d}$.
- $C = VP(n)$.

Warm-up

Algebraic Natural Proofs [FSV18,GKSS17]

- *U* - univariates of deg
$$\leq 3$$
 over \mathbb{C} .
- $\mathcal{C} = \{(\alpha y + \beta)^3 : \alpha, \beta \in \mathbb{C}\}.$
- $(\alpha y + \beta)^3 = \alpha^3 y^3 + 3\alpha^2 \beta y^2 + 3\alpha \beta^2 y + \beta^3.$
- If $q(y) \equiv (a, b, c, d) \in \mathcal{C}$,
then $P(a, b, c, d) = 9ad - bc = 0.$

-
$$U$$
 - n -variates of deg $\leq d$, $N = \binom{n+d}{d}$.
- $C = VP(n)$.
- $D = VNP(n)$.

Warm-up

Algebraic Natural Proofs [FSV18,GKSS17]

- *U* - univariates of deg ≤ 3 over \mathbb{C} . - $\mathcal{C} = \{(\alpha y + \beta)^3 : \alpha, \beta \in \mathbb{C}\}.$ - $(\alpha y + \beta)^3 = \alpha^3 y^3 + 3\alpha^2 \beta y^2 + 3\alpha \beta^2 y + \beta^3.$ - If $q(y) \equiv (a, b, c, d) \in \mathcal{C}$, then P(a, b, c, d) = 9ad - bc = 0.

- *U* - *n*-variates of deg
$$\leq d$$
, $N = \binom{n+d}{d}$.
- $C = VP(n)$.

-
$$\mathcal{D} = \mathsf{VNP}(n)$$
.

- Is there a "simple" $P(Z_1, ..., Z_N)$ s.t. $P(\overline{f}) = 0$ for all $f \in VP(n)$?

Warm-up

Algebraic Natural Proofs [FSV18,GKSS17]

- U n-variates of deg $\leq d$, $N = \binom{n+d}{d}$.
- C = VP(n).
- $\mathcal{D} = \mathsf{VNP}(n)$.
- Is there a $P(Z_1, \ldots, Z_N) \in VP(N)$ s.t. $P(\overline{f}) = 0$ for all $f \in VP(n)$?

Definition (Natural Proof for C)

For $n, d \in \mathbb{N}$, $N = \binom{n+d}{d}$, and $\mathcal{C}(n, d) \subseteq \mathbb{C}^N$,

Definition (Natural Proof for C)

For $n, d \in \mathbb{N}$, $N = \binom{n+d}{d}$, and $\mathcal{C}(n, d) \subseteq \mathbb{C}^N$, a *nonzero* $P(Z_1, \ldots, Z_N)$ is a VP-natural proof for $\mathcal{C}(n, d)$, if:

▶
$$P(\bar{f}) = 0$$
 for all $f \in C$,

► $P(Z_1, \ldots, Z_N) \in VP(N).$

Definition (Natural Proof for C)

For $n, d \in \mathbb{N}$, $N = \binom{n+d}{d}$, and $\mathcal{C}(n, d) \subseteq \mathbb{C}^N$, a *nonzero* $P(Z_1, \dots, Z_N)$ is a VP-natural proof for $\mathcal{C}(n, d)$, if:

▶
$$P(\bar{f}) = 0$$
 for all $f \in C$,

$$\blacktriangleright P(Z_1,\ldots,Z_N) \in VP(N).$$

Best Case Scenario: There exists a $P \in VP(N)$ vanishing on VP(n), but not on VNP(n).

Definition (Natural Proof for C)

For $n, d \in \mathbb{N}$, $N = \binom{n+d}{d}$, and $\mathcal{C}(n, d) \subseteq \mathbb{C}^N$, a *nonzero* $P(Z_1, \dots, Z_N)$ is a VP-natural proof for $\mathcal{C}(n, d)$, if:

▶
$$P(\bar{f}) = 0$$
 for all $f \in C$,

 $\blacktriangleright P(Z_1,\ldots,Z_N) \in VP(N).$

Best Case Scenario: There exists a $P \in VP(N)$ vanishing on VP(n), but not on VNP(n).

Barrier: No $P \in VP(N)$ witnesses the separation of VP(n) and VNP(n).

 \equiv "Natural techniques" cannot prove VP \neq VNP.

- (Boolean) natural proofs [RR97]:
 - ▶ If One-Way-Functions (OWFs) exist, then no natural proofs for P / poly.

- ▶ If One-Way-Functions (OWFs) exist, then no natural proofs for P / poly.
- Existence of OWFs is widely believed and heavily used in modern cryptography.

- ▶ If One-Way-Functions (OWFs) exist, then no natural proofs for P / poly.
- Existence of OWFs is widely believed and heavily used in modern cryptography.
- Algebraic natural proofs [FSV18,GKSS17]:
 - ▶ If VP(n) has poly log(n)-succinct hitting sets, then no natural proofs for VP.

- ▶ If One-Way-Functions (OWFs) exist, then no natural proofs for P / poly.
- Existence of OWFs is widely believed and heavily used in modern cryptography.
- Algebraic natural proofs [FSV18,GKSS17]:
 - ▶ If VP(n) has poly log(n)-succinct hitting sets, then no natural proofs for VP.
 - Succinct hitting sets are not well-studied.

- ▶ If One-Way-Functions (OWFs) exist, then no natural proofs for P / poly.
- Existence of OWFs is widely believed and heavily used in modern cryptography.
- Algebraic natural proofs [FSV18,GKSS17]:
 - ▶ If VP(n) has poly log(n)-succinct hitting sets, then no natural proofs for VP.
 - Succinct hitting sets are not well-studied.
- Explicit succinct hitting sets [FSV18]:
 - $\Sigma \Pi \Sigma(\text{poly} \log(n))$ -succinct hitting sets against weak classes (depth-3-powering,...).

- ▶ If One-Way-Functions (OWFs) exist, then no natural proofs for P / poly.
- Existence of OWFs is widely believed and heavily used in modern cryptography.
- Algebraic natural proofs [FSV18,GKSS17]:
 - ▶ If VP(n) has poly log(n)-succinct hitting sets, then no natural proofs for VP.
 - Succinct hitting sets are not well-studied.
- Explicit succinct hitting sets [FSV18]:
 - $\Sigma \Pi \Sigma(\text{poly} \log(n))$ -succinct hitting sets against weak classes (depth-3-powering,...).
 - Weak evidence for VP(n) having poly log(n)-succinct hitting sets.

Our results

Dream. There is a $P(Z_1, \ldots, Z_N) \in VP(N)$ s.t.

- ▶ $P(\bar{f}) = 0$ for all $f \in VP(n)$,
- ▶ $P(\bar{h}) \neq 0$ for some $h \in VNP(n)$.

Our results

Dream. There is a $P(Z_1, \ldots, Z_N) \in VP(N)$ s.t.

- ▶ $P(\overline{f}) = 0$ for all $f \in VP(n)$,
- ▶ $P(\bar{h}) \neq 0$ for some $h \in VNP(n)$.

Our Results.

[Chatterjee-Kumar-Ramya-Saptharishi-T 2020]:

Let VP' be the polynomials in VP that additionally have $\{-1, 0, 1\}$ coefficients. There exists $P(Z_1, \ldots, Z_N)$ such that $P(\bar{f}) = 0$ for all $f \in VP'(n)$.

Our results

Dream. There is a $P(Z_1, \ldots, Z_N) \in VP(N)$ s.t.

- ▶ $P(\overline{f}) = 0$ for all $f \in VP(n)$,
- ▶ $P(\bar{h}) \neq 0$ for some $h \in VNP(n)$.

Our Results.

[Chatterjee-Kumar-Ramya-Saptharishi-T 2020]:

Let VP' be the polynomials in VP that additionally have $\{-1, 0, 1\}$ coefficients. There exists $P(Z_1, \ldots, Z_N)$ such that $P(\bar{f}) = 0$ for all $f \in VP'(n)$.

► [Kumar-Ramya-Saptharishi-T 2020]:

Suppose the Permanent is $2^{n^{\epsilon}}$ -hard for constant $\epsilon > 0$. Then, if $Q(Z_1, \ldots, Z_N)$ is such that $Q(\bar{h}) = 0$ for all $h \in VNP'(n)$, then $Q(Z_1, \ldots, Z_N)$ is $N^{\omega(1)}$ -hard.

Theorem [CKRST'20]

For all large *n*, *d* and $N = \binom{n+d}{d}$, there exists a $P(Z_1, \ldots, Z_N)$ s.t.

- ▶ $P(\bar{f}) = 0$ for all $f \in VP(n)$ with coefficients in $\{-1, 0, 1\}$,
- $\blacktriangleright P(Z_1,\ldots,Z_N) \in VP(N),$

Theorem [CKRST'20]

For all large n, d and $N = \binom{n+d}{d}$, there exists a $P(Z_1, \ldots, Z_N)$ s.t.

▶
$$P(\bar{f}) = 0$$
 for all $f \in VP(n)$ with coefficients in $\{-1, 0, 1\}$,

$$\blacktriangleright P(Z_1,\ldots,Z_N) \in VP(N),$$

▶
$$P(\bar{h}) \neq 0$$
 for many *h* with $\{-1, 0, 1\}$ -coefficients.

Theorem [CKRST'20]

For all large n, d and $N = \binom{n+d}{d}$, there exists a $P(Z_1, \ldots, Z_N)$ s.t.

▶
$$P(\bar{f}) = 0$$
 for all $f \in VP(n)$ with coefficients in $\{-1, 0, 1\}$,

$$\blacktriangleright P(Z_1,\ldots,Z_N) \in VP(N),$$

▶
$$P(\bar{h}) \neq 0$$
 for many *h* with $\{-1, 0, 1\}$ -coefficients.

- Almost all well-studied polynomials (Det_n , $Perm_n$, ...) have $\{-1, 0, 1\}$ coefficients.

Theorem [CKRST'20]

For all large n, d and $N = \binom{n+d}{d}$, there exists a $P(Z_1, \ldots, Z_N)$ s.t.

▶ $P(\bar{f}) = 0$ for all $f \in VP(n)$ with coefficients in $\{-1, 0, 1\}$,

$$\blacktriangleright P(Z_1,\ldots,Z_N) \in VP(N),$$

▶
$$P(\bar{h}) \neq 0$$
 for many *h* with $\{-1, 0, 1\}$ -coefficients.

- Almost all well-studied polynomials (Det_n, Perm_n, ...) have $\{-1, 0, 1\}$ coefficients.
- Note. Such an equation could possibly prove $\operatorname{Perm}_n \notin \operatorname{VP}(n)$.

Theorem [CKRST'20]

For all large n, d and $N = \binom{n+d}{d}$, there exists a $P(Z_1, \ldots, Z_N)$ s.t.

▶ $P(\bar{f}) = 0$ for all $f \in VP(n)$ with coefficients in $\{-1, 0, 1\}$,

$$\blacktriangleright P(Z_1,\ldots,Z_N) \in VP(N),$$

- ▶ $P(\bar{h}) \neq 0$ for many *h* with $\{-1, 0, 1\}$ -coefficients.
- Almost all well-studied polynomials (Det_n, Perm_n, ...) have $\{-1, 0, 1\}$ coefficients.
- Note. Such an equation could possibly prove $\operatorname{Perm}_n \notin \operatorname{VP}(n)$.
- * Similar result also holds for VNP'.

Theorem [CKRST'20]

For all large n, d and $N = \binom{n+d}{d}$, there exists a $P(Z_1, \ldots, Z_N)$ s.t.

▶ $P(\bar{f}) = 0$ for all $f \in VP(n)$ with coefficients in $\{-1, 0, 1\}$,

$$\blacktriangleright P(Z_1,\ldots,Z_N) \in VP(N),$$

- ▶ $P(\bar{h}) \neq 0$ for many *h* with $\{-1, 0, 1\}$ -coefficients.
- Almost all well-studied polynomials (Det_n, Perm_n, ...) have $\{-1, 0, 1\}$ coefficients.
- Note. Such an equation could possibly prove $\operatorname{Perm}_n \notin \operatorname{VP}(n)$.
- * Similar result also holds for VNP'.

Idea. Hitting sets for $\mathcal C$ give natural proofs for $\mathcal C'$.

Theorem [KRST'20]

Suppose Perm_m is $2^{m^{\epsilon}}$ -hard for a constant $\epsilon > 0$. Then for some n, d = poly(m), and $N = \binom{n+d}{d}$,

Theorem [KRST'20]

Suppose Perm_m is $2^{m^{\epsilon}}$ -hard for a constant $\epsilon > 0$. Then for some n, d = poly(m), and $N = \binom{n+d}{d}$, if $Q(Z_1, \ldots, Z_N)$ is such that $Q(\bar{h}) = 0$ for all $h \in \text{VNP}(n)$, then size $(Q) = N^{\omega(1)}$.

Theorem [KRST'20]

Suppose Perm_m is $2^{m^{e}}$ -hard for a constant $\epsilon > 0$. Then for some n, d = poly(m), and $N = \binom{n+d}{d}$, if $Q(Z_{1}, \ldots, Z_{N})$ is such that $Q(\bar{h}) = 0$ for all $h \in \text{VNP}(n)$, then size $(Q) = N^{\omega(1)}$.

Message. Essentially no natural proofs for VNP!

Theorem [KRST'20]

Suppose Perm_m is $2^{m^{e}}$ -hard for a constant $\epsilon > 0$. Then for some n, d = poly(m), and $N = \binom{n+d}{d}$, if $Q(Z_{1}, \ldots, Z_{N})$ is such that $Q(\bar{h}) = 0$ for all $h \in \text{VNP}(n)$, then size $(Q) = N^{\omega(1)}$.

Message. Essentially no natural proofs for VNP!

* Restriction on coefficients is crucial for existence of easy proofs, for VNP.

Theorem [KRST'20]

Suppose Perm_m is $2^{m^{e}}$ -hard for a constant $\epsilon > 0$. Then for some n, d = poly(m), and $N = \binom{n+d}{d}$, if $Q(Z_{1}, \ldots, Z_{N})$ is such that $Q(\bar{h}) = 0$ for all $h \in \text{VNP}(n)$, then size $(Q) = N^{\omega(1)}$.

Message. Essentially no natural proofs for VNP!

* Restriction on coefficients is crucial for existence of easy proofs, for VNP.

Idea. The Kabanets-Impagliazzo generator [KI04] can be made VNP-succinct.

In the context of VP(N)-natural proofs for VP(n):

In the context of VP(N)-natural proofs for VP(n):

Believers. There is a natural separation between VP and VNP!

- Any natural proof for VP(n) separates VP and VNP.
- Prove existence of natural proofs for VP (using standard assumptions)?

In the context of VP(N)-natural proofs for VP(n):

Believers. There is a natural separation between VP and VNP!

- Any natural proof for VP(n) separates VP and VNP.
- Prove existence of natural proofs for VP (using standard assumptions)?
- **Skeptics.** Pseudorandomness of VP must come from large coefficients.
 - Our proof [KRST20] seems to require the power of VNP.
 - Prove non-existence of natural proofs for VP (using standard assumptions)?

In the context of VP(N)-natural proofs for VP(n):

Believers. There is a natural separation between VP and VNP!

- Any natural proof for VP(n) separates VP and VNP.
- Prove existence of natural proofs for VP (using standard assumptions)?
- Skeptics. Pseudorandomness of VP must come from large coefficients.
 Our proof [KRST20] seems to require the power of VNP.
 - Prove non-existence of natural proofs for VP (using standard assumptions)?

Undecided. The natural proofs question for VP seems quite interesting. :)

Thank You

Webpage: anamay.bitbucket.io

Formal statement of [CKRST'20]

- \exists a collection \mathcal{P} of proof families such that,
- \forall degree functions d(n) = poly(n),

the proof family $\left\{ P_{N(n)} \right\} = \mathcal{P}(d(n))$ is of $N(n) = \binom{n+d(n)}{n}$ variate polynomials,

and \forall size functions s(n) = poly(n), $\exists n_0$ such that $\forall n > n_0$,

the polynomial $P_{N(n)}$ vanishes on Ckt'(n, d(n), s(n)).

Formal statement of [KRST'20]

The polynomial Perm_m requires size $> 2^{m^{\epsilon}}$, for infinitely many m.

∃ a collection of families of polynomials $\mathcal{H} \subseteq \text{VNP}(n^c)$, such that the collection $\mathcal{H}(n)$ is a hitting set for VP_N where $N = \binom{n+n^c}{n}$.

Formal statement of [KRST'20]

The polynomial Perm_m requires size $> 2^{m^{e}}$, for infinitely many m.

 \exists a collection of families of polynomials $\mathcal{H} \subseteq \mathsf{VNP}(n^c)$, such that

for all degree and size functions d(N), s(N) = poly(N), there exists an m_0 , such that

if for some $m > m_0$, Perm_m requires size $> 2^{m^{\epsilon}}$,

then for n(m) = poly(m), $d = n^c$, the collection of polynomials $H_{n(m)} \subseteq \text{VNP}_{n(m)}(n^c)$

is a *hitting set* for the collection $VP_N(d(N), s(N))$ for $N(n) = \binom{n+n^c}{n}$.