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Algebraic P vs NP [Val79]

▶ VP (efficiently computable polynomials):

▶ Definition. {fn} with size(fn) = poly(n).

▶ e.g.,

Detn(
{
xi ,j

}
) = ∑

σ∈sn
sgn(σ)x1,σ(1)x2,σ(2) · · · xn,σ(n)

▶ Random polynomial is hard (outside VP), but not “explicit”.

▶ VNP (efficiently definable polynomials):

▶ Criterion. {fn} s.t. coefffn (m) is computable in time poly(n) for any m.

▶ e.g.,

Permn(
{
xi ,j

}
) = ∑

σ∈sn
x1,σ(1)x2,σ(2) · · · xn,σ(n)

Question. Is VP = VNP?
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Some known hardness results

▶ Hardness Results for Structured Models:

▶ Homogeneous constant depth formulas (exponential hardness) [NW95,GKKS13,KS14,. . .]
▶ Multilinear formulas (quasipolynomial hardness) [Raz09,DMPY12,. . .]
▶ Non-commutative formulas (exponential hardness) [Nis91,LMP16,. . .]
▶ Monotone circuits (exponential hardness) [Yeh19,Sri19]

Formulas: Circuits where the underlying DAG is a tree.

▶ Best Hardness Result for Circuits: Θ(n log d) [BS83,Smo97]

▶ Best Hardness Result for Formulas: Θ(n2) [Kal85,CKSV20]

Question. Are the “natural techniques” insufficient?



Some known hardness results

▶ Hardness Results for Structured Models:

▶ Homogeneous constant depth formulas (exponential hardness) [NW95,GKKS13,KS14,. . .]
▶ Multilinear formulas (quasipolynomial hardness) [Raz09,DMPY12,. . .]
▶ Non-commutative formulas (exponential hardness) [Nis91,LMP16,. . .]
▶ Monotone circuits (exponential hardness) [Yeh19,Sri19]

Formulas: Circuits where the underlying DAG is a tree.

▶ Best Hardness Result for Circuits: Θ(n log d) [BS83,Smo97]

▶ Best Hardness Result for Formulas: Θ(n2) [Kal85,CKSV20]

Question. Are the “natural techniques” insufficient?



Some known hardness results

▶ Hardness Results for Structured Models:

▶ Homogeneous constant depth formulas (exponential hardness) [NW95,GKKS13,KS14,. . .]
▶ Multilinear formulas (quasipolynomial hardness) [Raz09,DMPY12,. . .]
▶ Non-commutative formulas (exponential hardness) [Nis91,LMP16,. . .]
▶ Monotone circuits (exponential hardness) [Yeh19,Sri19]

Formulas: Circuits where the underlying DAG is a tree.

▶ Best Hardness Result for Circuits: Θ(n log d) [BS83,Smo97]

▶ Best Hardness Result for Formulas: Θ(n2) [Kal85,CKSV20]

Question. Are the “natural techniques” insufficient?



Some known hardness results

▶ Hardness Results for Structured Models:

▶ Homogeneous constant depth formulas (exponential hardness) [NW95,GKKS13,KS14,. . .]
▶ Multilinear formulas (quasipolynomial hardness) [Raz09,DMPY12,. . .]
▶ Non-commutative formulas (exponential hardness) [Nis91,LMP16,. . .]
▶ Monotone circuits (exponential hardness) [Yeh19,Sri19]

Formulas: Circuits where the underlying DAG is a tree.

▶ Best Hardness Result for Circuits: Θ(n log d) [BS83,Smo97]

▶ Best Hardness Result for Formulas: Θ(n2) [Kal85,CKSV20]

Question. Are the “natural techniques” insufficient?



What are “natural techniques”?

U

Universe

C: Simples D: Explicits

P : Weaks

Simples: Non-membership is difficult. Weaks: Non-membership is easy.

Easy weakness ⇒ Something explicit should be non-weak.
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Natural techniques in action

Warm-up

U = C4

C

P

P(a, b, c , d) = 0

h(y) = y3 + 1

P(1, 0, 0, 1) ̸= 0

- U - univariates of deg ≤ 3 over C.

- C =
{
(αy + β)3 : α, β ∈ C

}
.

- (αy + β)3 = α3y3 + 3α2βy2 + 3αβ2y + β3.

- If q(y) ≡ (a, b, c , d) ∈ C,
then P(a, b, c , d) = 9ad − bc = 0.

Algebraic Natural Proofs
[FSV18,GKSS17]

U = CN

VP(n)
VNP(n)

P : P(f̄ ) = 0

- U - n-variates of deg ≤ d , N = (n+d
d ).

- C = VP(n).

- D = VNP(n).

- Is there a “simple” P(Z1, . . . ,ZN ) s.t.

P(f̄ ) = 0 for all f ∈ VP(n)?
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Algebraic Natural Proofs [FSV18,GKSS17]

Definition (Natural Proof for C)
For n, d ∈ N, N = (n+d

d ), and C(n, d) ⊆ CN ,

a nonzero P(Z1, . . . ,ZN ) is a VP-natural proof for C(n, d), if:
▶ P(f̄ ) = 0 for all f ∈ C,
▶ P(Z1, . . . ,ZN ) ∈ VP(N).

Best Case Scenario: There exists a P ∈ VP(N) vanishing on VP(n), but not on VNP(n).
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Algebraic natural proofs barrier?

▶ (Boolean) natural proofs [RR97]:

▶ If One-Way-Functions (OWFs) exist, then no natural proofs for P/ poly.

▶ Existence of OWFs is widely believed and heavily used in modern cryptography.

▶ Algebraic natural proofs [FSV18,GKSS17]:

▶ If VP(n) has poly log(n)-succinct hitting sets, then no natural proofs for VP.

▶ Succinct hitting sets are not well-studied.

▶ Explicit succinct hitting sets [FSV18]:

▶ ΣΠΣ(poly log(n))-succinct hitting sets against weak classes (depth-3-powering,. . .).
▶ Weak evidence for VP(n) having poly log(n)-succinct hitting sets.
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Our results

Dream. There is a P(Z1, . . . ,ZN ) ∈ VP(N) s.t.

▶ P(f̄ ) = 0 for all f ∈ VP(n),

▶ P(h̄) ̸= 0 for some h ∈ VNP(n).

Our Results.

▶ [Chatterjee-Kumar-Ramya-Saptharishi-T 2020]:

Let VP′ be the polynomials in VP that additionally have {−1, 0, 1} coefficients.

There exists P(Z1, . . . ,ZN ) such that P(f̄ ) = 0 for all f ∈ VP′(n).

▶ [Kumar-Ramya-Saptharishi-T 2020]:

Suppose the Permanent is 2n
ϵ
-hard for constant ϵ > 0.

Then, if Q(Z1, . . . ,ZN ) is such that Q(h̄) = 0 for all h ∈ VNP′(n),

then Q(Z1, . . . ,ZN ) is N
ω(1)-hard.
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Proofs for “interesting” polynomials

Theorem [CKRST’20]

For all large n, d and N = (n+d
d ), there exists a P(Z1, . . . ,ZN ) s.t.

▶ P(f̄ ) = 0 for all f ∈ VP(n) with coefficients in {−1, 0, 1},
▶ P(Z1, . . . ,ZN ) ∈ VP(N),

▶ P(h̄) ̸= 0 for many h with {−1, 0, 1}-coefficients.

- Almost all well-studied polynomials (Detn, Permn, . . .) have {−1, 0, 1} coefficients.

- Note. Such an equation could possibly prove Permn ̸∈ VP(n).

* Similar result also holds for VNP′.

Idea. Hitting sets for C give natural proofs for C ′.
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Algebraic natural proofs for VNP

Theorem [KRST’20]

Suppose Permm is 2m
ϵ
-hard for a constant ϵ > 0.

Then for some n, d = poly(m), and N = (n+d
d ),

if Q(Z1, . . . ,ZN ) is such that Q(h̄) = 0 for all h ∈ VNP(n),

then size(Q) = Nω(1).

Message. Essentially no natural proofs for VNP!

* Restriction on coefficients is crucial for existence of easy proofs, for VNP.

Idea. The Kabanets-Impagliazzo generator [KI04] can be made VNP-succinct.
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What all this means...

In the context of VP(N)-natural proofs for VP(n):

▶ Believers. There is a natural separation between VP and VNP!

- Any natural proof for VP(n) separates VP and VNP.

- Prove existence of natural proofs for VP (using standard assumptions)?

▶ Skeptics. Pseudorandomness of VP must come from large coefficients.

- Our proof [KRST20] seems to require the power of VNP.

- Prove non-existence of natural proofs for VP (using standard assumptions)?

▶ Undecided. The natural proofs question for VP seems quite interesting. :)
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Formal statement of [CKRST’20]

∃ a collection P of proof families such that,

∀ degree functions d(n) = poly(n),

the proof family
{
PN(n)

}
= P(d(n)) is of N(n) = (n+d(n)

n ) variate polynomials,

and ∀ size functions s(n) = poly(n), ∃n0 such that ∀n > n0,

the polynomial PN(n) vanishes on Ckt′(n, d(n), s(n)).



Formal statement of [KRST’20]

The polynomial Permm requires size > 2m
ϵ
, for infinitely many m.

∃ a collection of families of polynomials H ⊆ VNP(nc ), such that

the collection H(n) is a hitting set for VPN where N = (n+nc

n ).
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∃ a collection of families of polynomials H ⊆ VNP(nc ), such that

for all degree and size functions d(N), s(N) = poly(N), there exists an m0, such that

if for some m > m0, Permm requires size > 2m
ϵ
,

then for n(m) = poly(m), d = nc , the collection of polynomials Hn(m) ⊆ VNPn(m)(n
c )

is a hitting set for the collection VPN (d(N), s(N)) for N(n) = (n+nc

n ).


