
Natural Proofs in Algebraic Circuit Complexity

Prerona Chatterjee

Mrinal Kumar

C. Ramya

Ramprasad Saptharishi

Anamay Tengse

(Tel Aviv University)

(TIFR, Mumbai)

(IMSc, Chennai)

(TIFR, Mumbai)

(University of Haifa)

22nd March 2023



▶ Are there any α, β for which x2 + 5xy + 9y2 = (αx + βy)2?

Why?

Proof: ax2 + bxy + cy2 = (αx + βy)2 ⇔ b2 − 4ac = 0,

and 52 − 4 · 1 · 9 ̸= 0.

▶ Is x3 + 2x2y + 3xy2 + 8y3 = (αx + βy)3 for some α, β?

Proof: ax3 + bx2y + cxy2 + dy3 = (αx + βy)3 ⇒ b2 − 3ac = 0,

and 22 − 3 · 1 · 3 ̸= 0.



▶ Are there any α, β for which x2 + 5xy + 9y2 = (αx + βy)2?

Why?

Proof: ax2 + bxy + cy2 = (αx + βy)2 ⇔ b2 − 4ac = 0,

and 52 − 4 · 1 · 9 ̸= 0.

▶ Is x3 + 2x2y + 3xy2 + 8y3 = (αx + βy)3 for some α, β?

Proof: ax3 + bx2y + cxy2 + dy3 = (αx + βy)3 ⇒ b2 − 3ac = 0,

and 22 − 3 · 1 · 3 ̸= 0.



▶ Are there any α, β for which x2 + 5xy + 9y2 = (αx + βy)2?

Why?

Proof: ax2 + bxy + cy2 = (αx + βy)2 ⇔ b2 − 4ac = 0,

and 52 − 4 · 1 · 9 ̸= 0.

▶ Is x3 + 2x2y + 3xy2 + 8y3 = (αx + βy)3 for some α, β?

Proof: ax3 + bx2y + cxy2 + dy3 = (αx + βy)3 ⇒ b2 − 3ac = 0,

and 22 − 3 · 1 · 3 ̸= 0.



▶ Are there any α, β for which x2 + 5xy + 9y2 = (αx + βy)2?

Why?

Proof: ax2 + bxy + cy2 = (αx + βy)2 ⇔ b2 − 4ac = 0,

and 52 − 4 · 1 · 9 ̸= 0.

▶ Is x3 + 2x2y + 3xy2 + 8y3 = (αx + βy)3 for some α, β?

Proof: ax3 + bx2y + cxy2 + dy3 = (αx + βy)3 ⇒ b2 − 3ac = 0,

and 22 − 3 · 1 · 3 ̸= 0.



▶ Are there any α, β for which x2 + 5xy + 9y2 = (αx + βy)2?

Why?

Proof: ax2 + bxy + cy2 = (αx + βy)2 ⇔ b2 − 4ac = 0,

and 52 − 4 · 1 · 9 ̸= 0.

▶ Is x3 + 2x2y + 3xy2 + 8y3 = (αx + βy)3 for some α, β?

Proof: ax3 + bx2y + cxy2 + dy3 = (αx + βy)3 ⇒ b2 − 3ac = 0,

and 22 − 3 · 1 · 3 ̸= 0.



▶ Are there any α, β for which x2 + 5xy + 9y2 = (αx + βy)2?

Why?

Proof: ax2 + bxy + cy2 = (αx + βy)2 ⇔ b2 − 4ac = 0,

and 52 − 4 · 1 · 9 ̸= 0.

▶ Is x3 + 2x2y + 3xy2 + 8y3 = (αx + βy)3 for some α, β?

Proof: ax3 + bx2y + cxy2 + dy3 = (αx + βy)3 ⇒ b2 − 3ac = 0,

and 22 − 3 · 1 · 3 ̸= 0.



Equations for polynomials

Universe U

Zeroes of P

C

Equation for C is nonzero polynomial P:

P vanishes on coefficients of every f ∈ C.

E.g.1 U =
{
ax2 + bxy + cy2

}
,

C =
{
(αx + βy)2

}
,

P = b2 − 4ac .

f ∈ C if and only if P(f ) = 0

E.g.2 U =
{
ax3 + bx2y + cxy2 + dy3

}
,

C =
{
(αx + βy)3

}
,

P = b2 − 3ac .

If f ∈ C then P(f ) = 0



Equations for polynomials

Universe U

Zeroes of P

C

Equation for C is nonzero polynomial P:

P vanishes on coefficients of every f ∈ C.

E.g.1 U =
{
ax2 + bxy + cy2

}
,

C =
{
(αx + βy)2

}
,

P = b2 − 4ac .

f ∈ C if and only if P(f ) = 0

E.g.2 U =
{
ax3 + bx2y + cxy2 + dy3

}
,

C =
{
(αx + βy)3

}
,

P = b2 − 3ac .

If f ∈ C then P(f ) = 0



Equations for polynomials

Universe U

Zeroes of P

C

Equation for C is nonzero polynomial P:

P vanishes on coefficients of every f ∈ C.

E.g.1 U =
{
ax2 + bxy + cy2

}
,

C =
{
(αx + βy)2

}
,

P = b2 − 4ac .

f ∈ C if and only if P(f ) = 0

E.g.2 U =
{
ax3 + bx2y + cxy2 + dy3

}
,

C =
{
(αx + βy)3

}
,

P = b2 − 3ac .

If f ∈ C then P(f ) = 0



▶ What happens when a class C has equations?

“Explicit” polynomials outside the class, sometimes

▶ Which classes are we interested in?

Corresponding to algebraic models

▶ Does the “complexity” of these equations matter?

Yes, for “explicit” lower bounds



▶ What happens when a class C has equations?

“Explicit” polynomials outside the class, sometimes

▶ Which classes are we interested in?

Corresponding to algebraic models

▶ Does the “complexity” of these equations matter?

Yes, for “explicit” lower bounds



▶ What happens when a class C has equations?

“Explicit” polynomials outside the class, sometimes

▶ Which classes are we interested in?

Corresponding to algebraic models

▶ Does the “complexity” of these equations matter?

Yes, for “explicit” lower bounds



▶ What happens when a class C has equations?

“Explicit” polynomials outside the class, sometimes

▶ Which classes are we interested in?

Corresponding to algebraic models

▶ Does the “complexity” of these equations matter?

Yes, for “explicit” lower bounds



▶ What happens when a class C has equations?

“Explicit” polynomials outside the class, sometimes

▶ Which classes are we interested in?

Corresponding to algebraic models

▶ Does the “complexity” of these equations matter?

Yes, for “explicit” lower bounds



▶ What happens when a class C has equations?

“Explicit” polynomials outside the class, sometimes

▶ Which classes are we interested in?

Corresponding to algebraic models

▶ Does the “complexity” of these equations matter?

Yes, for “explicit” lower bounds



Algebraic Circuits

x1 x2 . . . xn a1 . . . ar

+

×

f (x) ∈ C[x ]

C

Algebraic Circuit for f (x)

Size(C ): Number of gates

- ≈ No. of operations used by C

Size(f ): Size of the smallest circuit for f

- Min operations to compute f

Formula: Circuit whose graph is a tree

“Low-degree” polynomials.

Variables: n, Degree: d ,

Polynomials with d = poly(n).



Algebraic Circuits

x1 x2 . . . xn a1 . . . ar

Variables Complex numbers

+

×

f (x) ∈ C[x ]

C

Algebraic Circuit for f (x)

Size(C ): Number of gates

- ≈ No. of operations used by C

Size(f ): Size of the smallest circuit for f

- Min operations to compute f

Formula: Circuit whose graph is a tree

“Low-degree” polynomials.

Variables: n, Degree: d ,

Polynomials with d = poly(n).



Algebraic Circuits

x1 x2 . . . xn a1 . . . ar

Variables Complex numbers

+

×

f (x) ∈ C[x ]

C

Algebraic Circuit for f (x)

Size(C ): Number of gates

- ≈ No. of operations used by C

Size(f ): Size of the smallest circuit for f

- Min operations to compute f

Formula: Circuit whose graph is a tree

“Low-degree” polynomials.

Variables: n, Degree: d ,

Polynomials with d = poly(n).



Algebraic Circuits

x1 x2 . . . xn a1 . . . ar

Variables Complex numbers

+

×

f (x) ∈ C[x ]

C

Algebraic Circuit for f (x)

Size(C ): Number of gates

- ≈ No. of operations used by C

Size(f ): Size of the smallest circuit for f

- Min operations to compute f

Formula: Circuit whose graph is a tree

“Low-degree” polynomials.

Variables: n, Degree: d ,

Polynomials with d = poly(n).



Algebraic Circuits

x1 x2 . . . xn a1 . . . ar

+

×

f (x) ∈ C[x ]

C

Algebraic Circuit for f (x)

Size(C ): Number of gates

- ≈ No. of operations used by C

Size(f ): Size of the smallest circuit for f

- Min operations to compute f

Formula: Circuit whose graph is a tree

“Low-degree” polynomials.

Variables: n, Degree: d ,

Polynomials with d = poly(n).



Algebraic Circuits

x1 x2 . . . xn a1 . . . ar

+

×

f (x) ∈ C[x ]

C

Algebraic Circuit for f (x)

Size(C ): Number of gates

- ≈ No. of operations used by C

Size(f ): Size of the smallest circuit for f

- Min operations to compute f

Formula: Circuit whose graph is a tree

“Low-degree” polynomials.

Variables: n, Degree: d ,

Polynomials with d = poly(n).



Algebraic Circuits

x1 x2 . . . xn a1 . . . ar

+

×

f (x) ∈ C[x ]

C

Algebraic Circuit for f (x)

Size(C ): Number of gates

- ≈ No. of operations used by C

Size(f ): Size of the smallest circuit for f

- Min operations to compute f

Formula: Circuit whose graph is a tree

“Low-degree” polynomials.

Variables: n, Degree: d ,

Polynomials with d = poly(n).



Algebraic Circuits

x1 x2 . . . xn a1 . . . ar

+

×

f (x) ∈ C[x ]

C

Algebraic Circuit for f (x)

Size(C ): Number of gates

- ≈ No. of operations used by C

Size(f ): Size of the smallest circuit for f

- Min operations to compute f

Formula: Circuit whose graph is a tree

“Low-degree” polynomials.

Variables: n, Degree: d ,

Polynomials with d = poly(n).



Algebraic Circuits

x1 x2 . . . xn a1 . . . ar

+

×

f (x) ∈ C[x ]

C

Algebraic Circuit for f (x)

Size(C ): Number of gates

- ≈ No. of operations used by C

Size(f ): Size of the smallest circuit for f

- Min operations to compute f

Formula: Circuit whose graph is a tree

“Low-degree” polynomials.

Variables: n, Degree: d ,

Polynomials with d = poly(n).



Algebraic circuit complexity: Basics

Boolean world

▶ P (or P/ poly)

— E.g. MaxFlow,Matching

▶ NP (or NP/ poly)

— ‘verifiable’ in poly-time

— E.g. SAT

Algebraic world

▶ VP (efficiently computable)

— E.g. (Symbolic) Determinant

▶ VNP (“explicit”)

— Af in # P/ poly, Af (m) = coefff (m)

— E.g. Permanent

Big questions: VP vs VNP, Detn vs Permn



Algebraic circuit complexity: Basics

Boolean world

▶ P (or P/ poly)

— E.g. MaxFlow,Matching

▶ NP (or NP/ poly)

— ‘verifiable’ in poly-time

— E.g. SAT

Algebraic world

▶ VP (efficiently computable)

— E.g. (Symbolic) Determinant

▶ VNP (“explicit”)

— Af in # P/ poly, Af (m) = coefff (m)

— E.g. Permanent

Big questions: VP vs VNP, Detn vs Permn



Algebraic circuit complexity: Basics

Boolean world

▶ P (or P/ poly)

— E.g. MaxFlow,Matching

▶ NP (or NP/ poly)

— ‘verifiable’ in poly-time

— E.g. SAT

Algebraic world

▶ VP (efficiently computable)

— E.g. (Symbolic) Determinant

▶ VNP (“explicit”)

— Af in # P/ poly, Af (m) = coefff (m)

— E.g. Permanent

Big questions: VP vs VNP, Detn vs Permn



Algebraic circuit complexity: Basics

Boolean world

▶ P (or P/ poly)

— E.g. MaxFlow,Matching

▶ NP (or NP/ poly)

— ‘verifiable’ in poly-time

— E.g. SAT

Algebraic world

▶ VP (efficiently computable)

— E.g. (Symbolic) Determinant

▶ VNP (“explicit”)

— Af in # P/ poly, Af (m) = coefff (m)

— E.g. Permanent

Big questions: VP vs VNP, Detn vs Permn



Equations for Polynomials: Recap

Universe U

Zeroes of P

C

Definition.

Equation for C is nonzero polynomial P:

P vanishes on coefficients of all f ∈ C.

Rest of this talk:

Assume degree d = number of variables n.

N = Number of coefficients = (n+d
d ),

N = 2O(n).



Equations for Polynomials: Recap

Universe U

Zeroes of P

C

Definition.

Equation for C is nonzero polynomial P:

P vanishes on coefficients of all f ∈ C.

Rest of this talk:

Assume degree d = number of variables n.

N = Number of coefficients = (n+d
d ),

N = 2O(n).



Using equations to prove lower bounds

▶ P is an equation for the class C: if P(h) ̸= 0 for some h, then h /∈ C.

E.g. If C is VP and h ∈ VNP, we just proved VP ̸= VNP!

▶ Best known lower bounds in structured models:

Constant depth formulas [NW95,GKKS13,LST21], multilinear formulas [Raz05,KS23],

non-commutative formulas [Nis91,TLS22], multilinear circuits [KV20], . . .

▶ ALL the above use equations! Almost all these equations have poly-sized circuits.

▶ Notable omissions:

Best known lower bounds against circuits [BS83], formulas [Kal85,CKSV22], and

determinantal complexity [KV22].

Q. Are there (poly-sized) equations for general classes?



Using equations to prove lower bounds

▶ P is an equation for the class C: if P(h) ̸= 0 for some h, then h /∈ C.
E.g. If C is VP and h ∈ VNP, we just proved VP ̸= VNP!

▶ Best known lower bounds in structured models:

Constant depth formulas [NW95,GKKS13,LST21], multilinear formulas [Raz05,KS23],

non-commutative formulas [Nis91,TLS22], multilinear circuits [KV20], . . .

▶ ALL the above use equations! Almost all these equations have poly-sized circuits.

▶ Notable omissions:

Best known lower bounds against circuits [BS83], formulas [Kal85,CKSV22], and

determinantal complexity [KV22].

Q. Are there (poly-sized) equations for general classes?



Using equations to prove lower bounds

▶ P is an equation for the class C: if P(h) ̸= 0 for some h, then h /∈ C.
E.g. If C is VP and h ∈ VNP, we just proved VP ̸= VNP!

▶ Best known lower bounds in structured models:

Constant depth formulas [NW95,GKKS13,LST21], multilinear formulas [Raz05,KS23],

non-commutative formulas [Nis91,TLS22], multilinear circuits [KV20], . . .

▶ ALL the above use equations! Almost all these equations have poly-sized circuits.

▶ Notable omissions:

Best known lower bounds against circuits [BS83], formulas [Kal85,CKSV22], and

determinantal complexity [KV22].

Q. Are there (poly-sized) equations for general classes?



Using equations to prove lower bounds

▶ P is an equation for the class C: if P(h) ̸= 0 for some h, then h /∈ C.
E.g. If C is VP and h ∈ VNP, we just proved VP ̸= VNP!

▶ Best known lower bounds in structured models:

Constant depth formulas [NW95,GKKS13,LST21], multilinear formulas [Raz05,KS23],

non-commutative formulas [Nis91,TLS22], multilinear circuits [KV20], . . .

▶ ALL the above use equations! Almost all these equations have poly-sized circuits.

▶ Notable omissions:

Best known lower bounds against circuits [BS83], formulas [Kal85,CKSV22], and

determinantal complexity [KV22].

Q. Are there (poly-sized) equations for general classes?



Using equations to prove lower bounds

▶ P is an equation for the class C: if P(h) ̸= 0 for some h, then h /∈ C.
E.g. If C is VP and h ∈ VNP, we just proved VP ̸= VNP!

▶ Best known lower bounds in structured models:

Constant depth formulas [NW95,GKKS13,LST21], multilinear formulas [Raz05,KS23],

non-commutative formulas [Nis91,TLS22], multilinear circuits [KV20], . . .

▶ ALL the above use equations! Almost all these equations have poly-sized circuits.

▶ Notable omissions:

Best known lower bounds against circuits [BS83], formulas [Kal85,CKSV22], and

determinantal complexity [KV22].

Q. Are there (poly-sized) equations for general classes?



Using equations to prove lower bounds

▶ P is an equation for the class C: if P(h) ̸= 0 for some h, then h /∈ C.
E.g. If C is VP and h ∈ VNP, we just proved VP ̸= VNP!

▶ Best known lower bounds in structured models:

Constant depth formulas [NW95,GKKS13,LST21], multilinear formulas [Raz05,KS23],

non-commutative formulas [Nis91,TLS22], multilinear circuits [KV20], . . .

▶ ALL the above use equations! Almost all these equations have poly-sized circuits.

▶ Notable omissions:

Best known lower bounds against circuits [BS83], formulas [Kal85,CKSV22], and

determinantal complexity [KV22].

Q. Are there (poly-sized) equations for general classes?



Algebraic Natural Proofs

Definition (Algebraic Natural Proofs [FSV18,GKSS17])

A nonzero, N-variate polynomial P is a D-natural proof for C ⊂ R[x1, . . . , xn], if:
1. (Usefulness) P is an equation for C, and
2. (Constructibility) P ∈ D.

Summary.

▶ Equations are useful in proving explicit lower bounds.

▶ Known lower bounds against almost all structured models C, give VP-natural proofs for C.

!! Most lower bounds against general models do not use VP-natural proofs, or equations.

Q. Are there VP-natural proofs for general classes like VP?



Algebraic Natural Proofs

Definition (Algebraic Natural Proofs [FSV18,GKSS17])

A nonzero, N-variate polynomial P is a D-natural proof for C ⊂ R[x1, . . . , xn], if:
1. (Usefulness) P is an equation for C, and
2. (Constructibility) P ∈ D.

Summary.

▶ Equations are useful in proving explicit lower bounds.

▶ Known lower bounds against almost all structured models C, give VP-natural proofs for C.

!! Most lower bounds against general models do not use VP-natural proofs, or equations.

Q. Are there VP-natural proofs for general classes like VP?



Algebraic Natural Proofs

Definition (Algebraic Natural Proofs [FSV18,GKSS17])

A nonzero, N-variate polynomial P is a D-natural proof for C ⊂ R[x1, . . . , xn], if:
1. (Usefulness) P is an equation for C, and
2. (Constructibility) P ∈ D.

Summary.

▶ Equations are useful in proving explicit lower bounds.

▶ Known lower bounds against almost all structured models C, give VP-natural proofs for C.

!! Most lower bounds against general models do not use VP-natural proofs, or equations.

Q. Are there VP-natural proofs for general classes like VP?



Algebraic Natural Proofs

Definition (Algebraic Natural Proofs [FSV18,GKSS17])

A nonzero, N-variate polynomial P is a D-natural proof for C ⊂ R[x1, . . . , xn], if:
1. (Usefulness) P is an equation for C, and
2. (Constructibility) P ∈ D.

Summary.

▶ Equations are useful in proving explicit lower bounds.

▶ Known lower bounds against almost all structured models C, give VP-natural proofs for C.

!! Most lower bounds against general models do not use VP-natural proofs, or equations.

Q. Are there VP-natural proofs for general classes like VP?



Algebraic Natural Proofs

Definition (Algebraic Natural Proofs [FSV18,GKSS17])

A nonzero, N-variate polynomial P is a D-natural proof for C ⊂ R[x1, . . . , xn], if:
1. (Usefulness) P is an equation for C, and
2. (Constructibility) P ∈ D.

Summary.

▶ Equations are useful in proving explicit lower bounds.

▶ Known lower bounds against almost all structured models C, give VP-natural proofs for C.

!! Most lower bounds against general models do not use VP-natural proofs, or equations.

Q. Are there VP-natural proofs for general classes like VP?



Algebraic Natural Proofs

Definition (Algebraic Natural Proofs [FSV18,GKSS17])

A nonzero, N-variate polynomial P is a D-natural proof for C ⊂ R[x1, . . . , xn], if:
1. (Usefulness) P is an equation for C, and
2. (Constructibility) P ∈ D.

Summary.

▶ Equations are useful in proving explicit lower bounds.

▶ Known lower bounds against almost all structured models C, give VP-natural proofs for C.

!! Most lower bounds against general models do not use VP-natural proofs, or equations.

Q. Are there VP-natural proofs for general classes like VP?



Two (types of) Questions

Does VP have VP-natural proofs?

1. How ‘complex’ does a lower bound against VP need to be?

— Find smallest class D such that VP has D-natural proofs.

— [FSV18]: “Polynomials in D can’t be equations for depth-3-formulas, and hence VP”.

(where D is e.g. depth-3-powering, depth-2-formulas).

2. What is the best lower bound we can prove using ‘natural’ methods?

— Find largest class C such that C has VP-natural proofs.

— [CKRST20,KRST21]: Bounds on C using ‘hardness-randomness connections’.



Two (types of) Questions

Does VP have VP-natural proofs?

1. How ‘complex’ does a lower bound against VP need to be?

— Find smallest class D such that VP has D-natural proofs.

— [FSV18]: “Polynomials in D can’t be equations for depth-3-formulas, and hence VP”.

(where D is e.g. depth-3-powering, depth-2-formulas).

2. What is the best lower bound we can prove using ‘natural’ methods?

— Find largest class C such that C has VP-natural proofs.

— [CKRST20,KRST21]: Bounds on C using ‘hardness-randomness connections’.



Two (types of) Questions

Does VP have VP-natural proofs?

1. How ‘complex’ does a lower bound against VP need to be?

— Find smallest class D such that VP has D-natural proofs.

— [FSV18]: “Polynomials in D can’t be equations for depth-3-formulas, and hence VP”.

(where D is e.g. depth-3-powering, depth-2-formulas).

2. What is the best lower bound we can prove using ‘natural’ methods?

— Find largest class C such that C has VP-natural proofs.

— [CKRST20,KRST21]: Bounds on C using ‘hardness-randomness connections’.



Two (types of) Questions

Does VP have VP-natural proofs?

1. How ‘complex’ does a lower bound against VP need to be?

— Find smallest class D such that VP has D-natural proofs.

— [FSV18]: “Polynomials in D can’t be equations for depth-3-formulas, and hence VP”.

(where D is e.g. depth-3-powering, depth-2-formulas).

2. What is the best lower bound we can prove using ‘natural’ methods?

— Find largest class C such that C has VP-natural proofs.

— [CKRST20,KRST21]: Bounds on C using ‘hardness-randomness connections’.



Two (types of) Questions

Does VP have VP-natural proofs?

1. How ‘complex’ does a lower bound against VP need to be?

— Find smallest class D such that VP has D-natural proofs.

— [FSV18]: “Polynomials in D can’t be equations for depth-3-formulas, and hence VP”.

(where D is e.g. depth-3-powering, depth-2-formulas).

2. What is the best lower bound we can prove using ‘natural’ methods?

— Find largest class C such that C has VP-natural proofs.

— [CKRST20,KRST21]: Bounds on C using ‘hardness-randomness connections’.



Two (types of) Questions

Does VP have VP-natural proofs?

1. How ‘complex’ does a lower bound against VP need to be?

— Find smallest class D such that VP has D-natural proofs.

— [FSV18]: “Polynomials in D can’t be equations for depth-3-formulas, and hence VP”.

(where D is e.g. depth-3-powering, depth-2-formulas).

2. What is the best lower bound we can prove using ‘natural’ methods?

— Find largest class C such that C has VP-natural proofs.

— [CKRST20,KRST21]: Bounds on C using ‘hardness-randomness connections’.



Two (types of) Questions

Does VP have VP-natural proofs?

1. How ‘complex’ does a lower bound against VP need to be?

— Find smallest class D such that VP has D-natural proofs.

— [FSV18]: “Polynomials in D can’t be equations for depth-3-formulas, and hence VP”.

(where D is e.g. depth-3-powering, depth-2-formulas).

2. What is the best lower bound we can prove using ‘natural’ methods?

— Find largest class C such that C has VP-natural proofs.

— [CKRST20,KRST21]: Bounds on C using ‘hardness-randomness connections’.



Current Status

VP

VNP

VPSPACE

D
?
⊆ VP VP

?
⊆ C

Equations for VP in D Equations for C in VP

[FSV18]: e.g. D ̸⊆ powering

(Easy) D ⊆ VPSPACE

‘coeffs in PSPACE’

[CKRST20]: VP′ ⊆ C
VP ∩ {−1, 0, 1} coeffs

[KRST21]: VNP ̸⊆ C
If Perm is exp(nϵ)-hard



Current Status

VP

VNP

VPSPACE

D
?
⊆ VP VP

?
⊆ C

Equations for VP in D Equations for C in VP

[FSV18]: e.g. D ̸⊆ powering

(Easy) D ⊆ VPSPACE

‘coeffs in PSPACE’

[CKRST20]: VP′ ⊆ C
VP ∩ {−1, 0, 1} coeffs

[KRST21]: VNP ̸⊆ C
If Perm is exp(nϵ)-hard



Current Status

VP

VNP

VPSPACE

D
?
⊆ VP VP

?
⊆ C

Equations for VP in D Equations for C in VP

[FSV18]: e.g. D ̸⊆ powering

(Easy) D ⊆ VPSPACE

‘coeffs in PSPACE’

[CKRST20]: VP′ ⊆ C
VP ∩ {−1, 0, 1} coeffs

[KRST21]: VNP ̸⊆ C
If Perm is exp(nϵ)-hard



Current Status

VP

VNP

VPSPACE

D
?
⊆ VP VP

?
⊆ C

Equations for VP in D Equations for C in VP

[FSV18]: e.g. D ̸⊆ powering

(Easy) D ⊆ VPSPACE

‘coeffs in PSPACE’

[CKRST20]: VP′ ⊆ C
VP ∩ {−1, 0, 1} coeffs

[KRST21]: VNP ̸⊆ C
If Perm is exp(nϵ)-hard



Current Status

VP

VNP

VPSPACE

D
?
⊆ VP VP

?
⊆ C

Equations for VP in D Equations for C in VP

[FSV18]: e.g. D ̸⊆ powering

(Easy) D ⊆ VPSPACE

‘coeffs in PSPACE’

[CKRST20]: VP′ ⊆ C
VP ∩ {−1, 0, 1} coeffs

[KRST21]: VNP ̸⊆ C
If Perm is exp(nϵ)-hard



Current Status

VP

VNP

VPSPACE

D
?
⊆ VP VP

?
⊆ C

Equations for VP in D Equations for C in VP

[FSV18]: e.g. D ̸⊆ powering

(Easy) D ⊆ VPSPACE

‘coeffs in PSPACE’

[CKRST20]: VP′ ⊆ C
VP ∩ {−1, 0, 1} coeffs

[KRST21]: VNP ̸⊆ C
If Perm is exp(nϵ)-hard



Current Status

VP

VNP

VPSPACE

D
?
⊆ VP VP

?
⊆ C

Equations for VP in D Equations for C in VP

[FSV18]: e.g. D ̸⊆ powering

(Easy) D ⊆ VPSPACE

‘coeffs in PSPACE’

[CKRST20]: VP′ ⊆ C
VP ∩ {−1, 0, 1} coeffs

[KRST21]: VNP ̸⊆ C
If Perm is exp(nϵ)-hard



Equations for VP’: Ideas

Theorem [CKRST20]: VPN contains (non-trivial) equations for VP′
n = VPn ∩ {−1, 0, 1}N .

▶ Defn (Hitting Set) Set S ⊂ Zn is a hitting set for a class C, if
for all f ∈ C there is some a ∈ S : f (a) ̸= 0.

▶ “Diagonalisation using hitting sets” [HS80,Agr05]:

If h(a) = 0 for all a ∈ S , then h /∈ C.
▶ [HS80]: There exist efficient hitting sets S , for VP.

▶ Key Idea: Equations from hitting sets.

▶ Construct P: P(f ) = 0 if and only if f (a) ̸= 0 for some a ∈ S .

▶ (Issue): Requires “algebraic-NOT-gate” of degree ≈ size-of-domain.

(jugār.): Restrict coefficients (hence VP′), simulate “Chinese remaindering” using

non-uniformity.



Equations for VP’: Ideas

Theorem [CKRST20]: VPN contains (non-trivial) equations for VP′
n = VPn ∩ {−1, 0, 1}N .

▶ Defn (Hitting Set) Set S ⊂ Zn is a hitting set for a class C, if
for all f ∈ C there is some a ∈ S : f (a) ̸= 0.

▶ “Diagonalisation using hitting sets” [HS80,Agr05]:

If h(a) = 0 for all a ∈ S , then h /∈ C.
▶ [HS80]: There exist efficient hitting sets S , for VP.

▶ Key Idea: Equations from hitting sets.

▶ Construct P: P(f ) = 0 if and only if f (a) ̸= 0 for some a ∈ S .

▶ (Issue): Requires “algebraic-NOT-gate” of degree ≈ size-of-domain.

(jugār.): Restrict coefficients (hence VP′), simulate “Chinese remaindering” using

non-uniformity.



Equations for VP’: Ideas

Theorem [CKRST20]: VPN contains (non-trivial) equations for VP′
n = VPn ∩ {−1, 0, 1}N .

▶ Defn (Hitting Set) Set S ⊂ Zn is a hitting set for a class C, if
for all f ∈ C there is some a ∈ S : f (a) ̸= 0.

▶ “Diagonalisation using hitting sets” [HS80,Agr05]:

If h(a) = 0 for all a ∈ S , then h /∈ C.

▶ [HS80]: There exist efficient hitting sets S , for VP.

▶ Key Idea: Equations from hitting sets.

▶ Construct P: P(f ) = 0 if and only if f (a) ̸= 0 for some a ∈ S .

▶ (Issue): Requires “algebraic-NOT-gate” of degree ≈ size-of-domain.

(jugār.): Restrict coefficients (hence VP′), simulate “Chinese remaindering” using

non-uniformity.



Equations for VP’: Ideas

Theorem [CKRST20]: VPN contains (non-trivial) equations for VP′
n = VPn ∩ {−1, 0, 1}N .

▶ Defn (Hitting Set) Set S ⊂ Zn is a hitting set for a class C, if
for all f ∈ C there is some a ∈ S : f (a) ̸= 0.

▶ “Diagonalisation using hitting sets” [HS80,Agr05]:

If h(a) = 0 for all a ∈ S , then h /∈ C.
▶ [HS80]: There exist efficient hitting sets S , for VP.

▶ Key Idea: Equations from hitting sets.

▶ Construct P: P(f ) = 0 if and only if f (a) ̸= 0 for some a ∈ S .

▶ (Issue): Requires “algebraic-NOT-gate” of degree ≈ size-of-domain.

(jugār.): Restrict coefficients (hence VP′), simulate “Chinese remaindering” using

non-uniformity.



Equations for VP’: Ideas

Theorem [CKRST20]: VPN contains (non-trivial) equations for VP′
n = VPn ∩ {−1, 0, 1}N .

▶ Defn (Hitting Set) Set S ⊂ Zn is a hitting set for a class C, if
for all f ∈ C there is some a ∈ S : f (a) ̸= 0.

▶ “Diagonalisation using hitting sets” [HS80,Agr05]:

If h(a) = 0 for all a ∈ S , then h /∈ C.
▶ [HS80]: There exist efficient hitting sets S , for VP.

▶ Key Idea: Equations from hitting sets.

▶ Construct P: P(f ) = 0 if and only if f (a) ̸= 0 for some a ∈ S .

▶ (Issue): Requires “algebraic-NOT-gate” of degree ≈ size-of-domain.

(jugār.): Restrict coefficients (hence VP′), simulate “Chinese remaindering” using

non-uniformity.



Equations for VP’: Ideas

Theorem [CKRST20]: VPN contains (non-trivial) equations for VP′
n = VPn ∩ {−1, 0, 1}N .

▶ Defn (Hitting Set) Set S ⊂ Zn is a hitting set for a class C, if
for all f ∈ C there is some a ∈ S : f (a) ̸= 0.

▶ “Diagonalisation using hitting sets” [HS80,Agr05]:

If h(a) = 0 for all a ∈ S , then h /∈ C.
▶ [HS80]: There exist efficient hitting sets S , for VP.

▶ Key Idea: Equations from hitting sets.

▶ Construct P: P(f ) = 0 if and only if f (a) ̸= 0 for some a ∈ S .

▶ (Issue): Requires “algebraic-NOT-gate” of degree ≈ size-of-domain.

(jugār.): Restrict coefficients (hence VP′), simulate “Chinese remaindering” using

non-uniformity.



Equations for VP’: Ideas

Theorem [CKRST20]: VPN contains (non-trivial) equations for VP′
n = VPn ∩ {−1, 0, 1}N .

▶ Defn (Hitting Set) Set S ⊂ Zn is a hitting set for a class C, if
for all f ∈ C there is some a ∈ S : f (a) ̸= 0.

▶ “Diagonalisation using hitting sets” [HS80,Agr05]:

If h(a) = 0 for all a ∈ S , then h /∈ C.
▶ [HS80]: There exist efficient hitting sets S , for VP.

▶ Key Idea: Equations from hitting sets.

▶ Construct P: P(f ) = 0 if and only if f (a) ̸= 0 for some a ∈ S .

▶ (Issue): Requires “algebraic-NOT-gate” of degree ≈ size-of-domain.

(jugār.): Restrict coefficients (hence VP′), simulate “Chinese remaindering” using

non-uniformity.



Equations for VP’: Ideas

Theorem [CKRST20]: VPN contains (non-trivial) equations for VP′
n = VPn ∩ {−1, 0, 1}N .

▶ Defn (Hitting Set) Set S ⊂ Zn is a hitting set for a class C, if
for all f ∈ C there is some a ∈ S : f (a) ̸= 0.

▶ “Diagonalisation using hitting sets” [HS80,Agr05]:

If h(a) = 0 for all a ∈ S , then h /∈ C.
▶ [HS80]: There exist efficient hitting sets S , for VP.

▶ Key Idea: Equations from hitting sets.

▶ Construct P: P(f ) = 0 if and only if f (a) ̸= 0 for some a ∈ S .

▶ (Issue): Requires “algebraic-NOT-gate” of degree ≈ size-of-domain.

(jugār.): Restrict coefficients (hence VP′), simulate “Chinese remaindering” using

non-uniformity.



Equations for VP’: Comments

▶ Bounded coefficients: Almost all well-studied polynomials have small coefficients.

— Does not affect computability, e.g. Perm ∈ VP′ ⇔ VP = VNP.

— Result also holds for integer coefficients with absolute value ∼ 2n.

— Making this work for 2n
ω(1)

would imply VP-natural proofs for VP!

▶ Efficient hitting sets also exist for VNP,

[?!] The same result holds for the analogous class VNP′.

— BUT if some h ∈ VNP′ (say Perm) vanishes on a hitting set for VP,

then that hitting set gives a “VP-natural proof for VP ̸= VNP”!!



Equations for VP’: Comments

▶ Bounded coefficients: Almost all well-studied polynomials have small coefficients.

— Does not affect computability, e.g. Perm ∈ VP′ ⇔ VP = VNP.

— Result also holds for integer coefficients with absolute value ∼ 2n.

— Making this work for 2n
ω(1)

would imply VP-natural proofs for VP!

▶ Efficient hitting sets also exist for VNP,

[?!] The same result holds for the analogous class VNP′.

— BUT if some h ∈ VNP′ (say Perm) vanishes on a hitting set for VP,

then that hitting set gives a “VP-natural proof for VP ̸= VNP”!!



Equations for VP’: Comments

▶ Bounded coefficients: Almost all well-studied polynomials have small coefficients.

— Does not affect computability, e.g. Perm ∈ VP′ ⇔ VP = VNP.

— Result also holds for integer coefficients with absolute value ∼ 2n.

— Making this work for 2n
ω(1)

would imply VP-natural proofs for VP!

▶ Efficient hitting sets also exist for VNP,

[?!] The same result holds for the analogous class VNP′.

— BUT if some h ∈ VNP′ (say Perm) vanishes on a hitting set for VP,

then that hitting set gives a “VP-natural proof for VP ̸= VNP”!!



Equations for VP’: Comments

▶ Bounded coefficients: Almost all well-studied polynomials have small coefficients.

— Does not affect computability, e.g. Perm ∈ VP′ ⇔ VP = VNP.

— Result also holds for integer coefficients with absolute value ∼ 2n.

— Making this work for 2n
ω(1)

would imply VP-natural proofs for VP!

▶ Efficient hitting sets also exist for VNP,

[?!] The same result holds for the analogous class VNP′.

— BUT if some h ∈ VNP′ (say Perm) vanishes on a hitting set for VP,

then that hitting set gives a “VP-natural proof for VP ̸= VNP”!!



Equations for VP’: Comments

▶ Bounded coefficients: Almost all well-studied polynomials have small coefficients.

— Does not affect computability, e.g. Perm ∈ VP′ ⇔ VP = VNP.

— Result also holds for integer coefficients with absolute value ∼ 2n.

— Making this work for 2n
ω(1)

would imply VP-natural proofs for VP!

▶ Efficient hitting sets also exist for VNP,

[?!] The same result holds for the analogous class VNP′.

— BUT if some h ∈ VNP′ (say Perm) vanishes on a hitting set for VP,

then that hitting set gives a “VP-natural proof for VP ̸= VNP”!!



Equations for VP’: Comments

▶ Bounded coefficients: Almost all well-studied polynomials have small coefficients.

— Does not affect computability, e.g. Perm ∈ VP′ ⇔ VP = VNP.

— Result also holds for integer coefficients with absolute value ∼ 2n.

— Making this work for 2n
ω(1)

would imply VP-natural proofs for VP!

▶ Efficient hitting sets also exist for VNP,

[?!] The same result holds for the analogous class VNP′.

— BUT if some h ∈ VNP′ (say Perm) vanishes on a hitting set for VP,

then that hitting set gives a “VP-natural proof for VP ̸= VNP”!!



No* VP-equations for VNP: Ideas

Hardness → Psuedorandomness

[KI03]

“VNP-succinct”

exp(
√
n)-hard poly h

h ∈ VNP

Combinatorial design

based on RS-codes

Hitting sets for VP(N)

coefficient vectors from VNP(n)

Our contribution [KRST21]

Recall: S hitting set for VP ⇒ no f ∈ VP vanishes on all of S .



No* VP-equations for VNP: Ideas

Hardness → Psuedorandomness

[KI03]

“VNP-succinct”

exp(
√
n)-hard poly h

h ∈ VNP

Combinatorial design

based on RS-codes

Hitting sets for VP(N)

coefficient vectors from VNP(n)

Our contribution [KRST21]

Recall: S hitting set for VP ⇒ no f ∈ VP vanishes on all of S .



No* VP-equations for VNP: Ideas

Hardness → Psuedorandomness

[KI03]

“VNP-succinct”

exp(
√
n)-hard poly h

h ∈ VNP

Combinatorial design

based on RS-codes

Hitting sets for VP(N)

coefficient vectors from VNP(n)

Our contribution [KRST21]

Recall: S hitting set for VP ⇒ no f ∈ VP vanishes on all of S .



No* VP-equations for VNP: Ideas

Hardness → Psuedorandomness

[KI03]

“VNP-succinct”

exp(
√
n)-hard poly h

h ∈ VNP

Combinatorial design

based on RS-codes

Hitting sets for VP(N)

coefficient vectors from VNP(n)

Our contribution [KRST21]

Recall: S hitting set for VP ⇒ no f ∈ VP vanishes on all of S .



No* VP-equations for VNP: Ideas

Hardness → Psuedorandomness

[KI03]

“VNP-succinct”

exp(
√
n)-hard poly h

h ∈ VNP

Combinatorial design

based on RS-codes

Hitting sets for VP(N)

coefficient vectors from VNP(n)

Our contribution [KRST21]

Recall: S hitting set for VP ⇒ no f ∈ VP vanishes on all of S .



No* VP-equations for VNP: Ideas

Hardness → Psuedorandomness

[KI03]

“VNP-succinct”

exp(
√
n)-hard poly h

h ∈ VNP

Combinatorial design

based on RS-codes

Hitting sets for VP(N)

coefficient vectors from VNP(n)

Our contribution [KRST21]

Recall: S hitting set for VP ⇒ no f ∈ VP vanishes on all of S .



No* VP-equations for VNP: Ideas

Hardness → Psuedorandomness

[KI03]

“VNP-succinct”

exp(
√
n)-hard poly h

h ∈ VNP

Combinatorial design

based on RS-codes

Hitting sets for VP(N)

coefficient vectors from VNP(n)

Our contribution [KRST21]

Recall: S hitting set for VP ⇒ no f ∈ VP vanishes on all of S .



No* VP-equations for VNP: Ideas

Hardness → Psuedorandomness

[KI03]

“VNP-succinct”

exp(
√
n)-hard poly h

h ∈ VNP

Combinatorial design

based on RS-codes

Hitting sets for VP(N)

coefficient vectors from VNP(n)

Our contribution [KRST21]

Recall: S hitting set for VP ⇒ no f ∈ VP vanishes on all of S .



No* VP-equations for VNP: Ideas

Hardness → Psuedorandomness

[KI03]

“VNP-succinct”

exp(
√
n)-hard poly h

h ∈ VNP

Combinatorial design

based on RS-codes

Hitting sets for VP(N)

coefficient vectors from VNP(n)

Our contribution [KRST21]

Recall: S hitting set for VP ⇒ no f ∈ VP vanishes on all of S .



No* VP-equations for VNP: Ideas

Hardness → Psuedorandomness

[KI03]

“VNP-succinct”

exp(
√
n)-hard poly h

h ∈ VNP

Combinatorial design

based on RS-codes

Hitting sets for VP(N)

coefficient vectors from VNP(n)

Our contribution [KRST21]

Recall: S hitting set for VP ⇒ no f ∈ VP vanishes on all of S .



No* VP-equations for VNP: Comments

▶ Any VP-equation for VP, is a natural proof for VP ̸= VNP!

“If VP, VNP are sufficiently separated, then there is a natural proof for it”.

▶ Note: Coefficient vectors generated here have integers of absolute value 2poly(n), therefore

not in VNP′. We do not get sub-exponential sized circuits for Perm. :)

▶ “Efficient equations give explicit lower bounds”.

Subject to Perm being 2n
ϵ
hard.



No* VP-equations for VNP: Comments

▶ Any VP-equation for VP, is a natural proof for VP ̸= VNP!

“If VP, VNP are sufficiently separated, then there is a natural proof for it”.

▶ Note: Coefficient vectors generated here have integers of absolute value 2poly(n), therefore

not in VNP′. We do not get sub-exponential sized circuits for Perm. :)

▶ “Efficient equations give explicit lower bounds”.

Subject to Perm being 2n
ϵ
hard.



No* VP-equations for VNP: Comments

▶ Any VP-equation for VP, is a natural proof for VP ̸= VNP!

“If VP, VNP are sufficiently separated, then there is a natural proof for it”.

▶ Note: Coefficient vectors generated here have integers of absolute value 2poly(n), therefore

not in VNP′. We do not get sub-exponential sized circuits for Perm. :)

▶ “Efficient equations give explicit lower bounds”.

Subject to Perm being 2n
ϵ
hard.



Open Directions

▶ “There is a naturalisation barrier”

— Extend [KRST21] to get VP-succinct hitting sets for VP . . .?
— Requires a VP-succinct analogue of [KI03], that works even with poly(n)-hardness, highly

interesting in its own right.

▶ “Natural methods are sufficient”

— (Conditionally) extend [CKRST20] to work for VP with coefficients of size 2n
ω(1)

. . .?
— Due to [KRST21], equations for coefficients of size 2poly(n) would essentially guarantee a

“natural separation” of VP and VNP.



Open Directions

▶ “There is a naturalisation barrier”

— Extend [KRST21] to get VP-succinct hitting sets for VP . . .?

— Requires a VP-succinct analogue of [KI03], that works even with poly(n)-hardness, highly

interesting in its own right.

▶ “Natural methods are sufficient”

— (Conditionally) extend [CKRST20] to work for VP with coefficients of size 2n
ω(1)

. . .?
— Due to [KRST21], equations for coefficients of size 2poly(n) would essentially guarantee a

“natural separation” of VP and VNP.



Open Directions

▶ “There is a naturalisation barrier”

— Extend [KRST21] to get VP-succinct hitting sets for VP . . .?
— Requires a VP-succinct analogue of [KI03], that works even with poly(n)-hardness, highly

interesting in its own right.

▶ “Natural methods are sufficient”

— (Conditionally) extend [CKRST20] to work for VP with coefficients of size 2n
ω(1)

. . .?
— Due to [KRST21], equations for coefficients of size 2poly(n) would essentially guarantee a

“natural separation” of VP and VNP.



Open Directions

▶ “There is a naturalisation barrier”

— Extend [KRST21] to get VP-succinct hitting sets for VP . . .?
— Requires a VP-succinct analogue of [KI03], that works even with poly(n)-hardness, highly

interesting in its own right.

▶ “Natural methods are sufficient”

— (Conditionally) extend [CKRST20] to work for VP with coefficients of size 2n
ω(1)

. . .?
— Due to [KRST21], equations for coefficients of size 2poly(n) would essentially guarantee a

“natural separation” of VP and VNP.



Open Directions

▶ “There is a naturalisation barrier”

— Extend [KRST21] to get VP-succinct hitting sets for VP . . .?
— Requires a VP-succinct analogue of [KI03], that works even with poly(n)-hardness, highly

interesting in its own right.

▶ “Natural methods are sufficient”

— (Conditionally) extend [CKRST20] to work for VP with coefficients of size 2n
ω(1)

. . .?

— Due to [KRST21], equations for coefficients of size 2poly(n) would essentially guarantee a

“natural separation” of VP and VNP.



Open Directions

▶ “There is a naturalisation barrier”

— Extend [KRST21] to get VP-succinct hitting sets for VP . . .?
— Requires a VP-succinct analogue of [KI03], that works even with poly(n)-hardness, highly

interesting in its own right.

▶ “Natural methods are sufficient”

— (Conditionally) extend [CKRST20] to work for VP with coefficients of size 2n
ω(1)

. . .?
— Due to [KRST21], equations for coefficients of size 2poly(n) would essentially guarantee a

“natural separation” of VP and VNP.



Thank You
Questions?


	Introduction
	Equations


