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▶ Are there any α, β for which x2 + 5xy + 9y2 = (αx + βy)2?

Why?

Proof: ax2 + bxy + cy2 = (αx + βy)2 ⇔ b2 − 4ac = 0,

and 52 − 4 · 1 · 9 ̸= 0.

▶ Is x3 + 2x2y + 3xy2 + 8y3 = (αx + βy)3 for some α, β?

Proof: ax3 + bx2y + cxy2 + dy3 = (αx + βy)3 ⇒ b2 − 3ac = 0,

and 22 − 3 · 1 · 3 ̸= 0.
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Equations for polynomials

Universe U

Zeroes of P

C

Equation for C is nonzero polynomial P:

P vanishes on coefficients of every f ∈ C.

E.g.1 U =
{
ax2 + bxy + cy2

}
,

C =
{
(αx + βy)2

}
,

P = b2 − 4ac .

f ∈ C if and only if P(f ) = 0

E.g.2 U =
{
ax3 + bx2y + cxy2 + dy3

}
,

C =
{
(αx + βy)3

}
,

P = b2 − 3ac .

If f ∈ C then P(f ) = 0
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▶ What happens when a class C has equations?

“Explicit” polynomials outside the class, sometimes

▶ Which classes are we interested in?

Corresponding to algebraic models

▶ Does the “complexity” of these equations matter?

Yes, for “explicit” lower bounds
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Algebraic Circuits

x1 x2 . . . xn a1 . . . ar

+

×

f (x) ∈ C[x ]

C

Algebraic Circuit for f (x)

Size(C ): Number of gates

- ≈ No. of operations used by C

Size(f ): Size of the smallest circuit for f

- Min operations to compute f

Formula: Circuit whose graph is a tree

“Low-degree” polynomials.

Variables: n, Degree: d ,

Polynomials with d = poly(n).
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Algebraic circuit complexity: Basics

Boolean world

▶ P (or P/ poly)

— E.g. MaxFlow,Matching

▶ NP (or NP/ poly)

— ‘verifiable’ in poly-time

— E.g. SAT

Algebraic world

▶ VP (efficiently computable)

— E.g. (Symbolic) Determinant

▶ VNP (“explicit”)

— Af in # P/ poly, Af (m) = coefff (m)

— E.g. Permanent

Big questions: VP vs VNP, Detn vs Permn
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Equations for Polynomials: Recap

Universe U

Zeroes of P

C

Definition.

Equation for C is nonzero polynomial P:

P vanishes on coefficients of all f ∈ C.

Rest of this talk:

Assume degree d = number of variables n.

N = Number of coefficients = (n+d
d ),

N = 2O(n).
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Using equations to prove lower bounds

▶ P is an equation for the class C: if P(h) ̸= 0 for some h, then h /∈ C.

E.g. If C is VP and h ∈ VNP, we just proved VP ̸= VNP!

▶ Best known lower bounds in structured models:

Constant depth formulas [NW95,GKKS13,LST21], multilinear formulas [Raz05,KS23],

non-commutative formulas [Nis91,TLS22], multilinear circuits [KV20], . . .

▶ ALL the above use equations! Almost all these equations have poly-sized circuits.

▶ Notable omissions:

Best known lower bounds against circuits [BS83], formulas [Kal85,CKSV22], and

determinantal complexity [KV22].

Q. Are there (poly-sized) equations for general classes?
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Algebraic Natural Proofs

Definition (Algebraic Natural Proofs [FSV18,GKSS17])

A nonzero, N-variate polynomial P is a D-natural proof for C ⊂ R[x1, . . . , xn], if:
1. (Usefulness) P is an equation for C, and
2. (Constructibility) P ∈ D.

Summary.

▶ Equations are useful in proving explicit lower bounds.

▶ Known lower bounds against almost all structured models C, give VP-natural proofs for C.

!! Most lower bounds against general models do not use VP-natural proofs, or equations.

Q. Are there VP-natural proofs for general classes like VP?
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Two (types of) Questions

Does VP have VP-natural proofs?

1. How ‘complex’ does a lower bound against VP need to be?

— Find smallest class D such that VP has D-natural proofs.

— [FSV18]: “Polynomials in D can’t be equations for depth-3-formulas, and hence VP”.

(where D is e.g. depth-3-powering, depth-2-formulas).

2. What is the best lower bound we can prove using ‘natural’ methods?

— Find largest class C such that C has VP-natural proofs.

— [CKRST20,KRST21]: Bounds on C using ‘hardness-randomness connections’.
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Current Status

VP

VNP

VPSPACE

D
?
⊆ VP VP

?
⊆ C

Equations for VP in D Equations for C in VP

[FSV18]: e.g. D ̸⊆ powering

(Easy) D ⊆ VPSPACE

‘coeffs in PSPACE’

[CKRST20]: VP′ ⊆ C
VP ∩ {−1, 0, 1} coeffs

[KRST21]: VNP ̸⊆ C
If Perm is exp(nϵ)-hard
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Equations for VP’: Ideas

Theorem [CKRST20]: VPN contains (non-trivial) equations for VP′
n = VPn ∩ {−1, 0, 1}N .

▶ Defn (Hitting Set) Set S ⊂ Zn is a hitting set for a class C, if
for all f ∈ C there is some a ∈ S : f (a) ̸= 0.

▶ “Diagonalisation using hitting sets” [HS80,Agr05]:

If h(a) = 0 for all a ∈ S , then h /∈ C.
▶ [HS80]: There exist efficient hitting sets S , for VP.

▶ Key Idea: Equations from hitting sets.

▶ Construct P: P(f ) = 0 if and only if f (a) ̸= 0 for some a ∈ S .

▶ (Issue): Requires “algebraic-NOT-gate” of degree ≈ size-of-domain.

(jugār.): Restrict coefficients (hence VP′), simulate “Chinese remaindering” using

non-uniformity.
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Equations for VP’: Comments

▶ Bounded coefficients: Almost all well-studied polynomials have small coefficients.

— Does not affect computability, e.g. Perm ∈ VP′ ⇔ VP = VNP.

— Result also holds for integer coefficients with absolute value ∼ 2n.

— Making this work for 2n
ω(1)

would imply VP-natural proofs for VP!

▶ Efficient hitting sets also exist for VNP,

[?!] The same result holds for the analogous class VNP′.

— BUT if some h ∈ VNP′ (say Perm) vanishes on a hitting set for VP,

then that hitting set gives a “VP-natural proof for VP ̸= VNP”!!
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No* VP-equations for VNP: Ideas

Hardness → Psuedorandomness

[KI03]

“VNP-succinct”

exp(
√
n)-hard poly h

h ∈ VNP

Combinatorial design

based on RS-codes

Hitting sets for VP(N)

coefficient vectors from VNP(n)

Our contribution [KRST21]

Recall: S hitting set for VP ⇒ no f ∈ VP vanishes on all of S .
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No* VP-equations for VNP: Comments

▶ Any VP-equation for VP, is a natural proof for VP ̸= VNP!

“If VP, VNP are sufficiently separated, then there is a natural proof for it”.

▶ Note: Coefficient vectors generated here have integers of absolute value 2poly(n), therefore

not in VNP′. We do not get sub-exponential sized circuits for Perm. :)

▶ “Efficient equations give explicit lower bounds”.

Subject to Perm being 2n
ϵ
hard.
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Open Directions

▶ “There is a naturalisation barrier”

— Extend [KRST21] to get VP-succinct hitting sets for VP . . .?
— Requires a VP-succinct analogue of [KI03], that works even with poly(n)-hardness, highly

interesting in its own right.

▶ “Natural methods are sufficient”

— (Conditionally) extend [CKRST20] to work for VP with coefficients of size 2n
ω(1)

. . .?
— Due to [KRST21], equations for coefficients of size 2poly(n) would essentially guarantee a

“natural separation” of VP and VNP.
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