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Introduction

I am mainly interested in complexity theory, a field that deals with determining the cost of com-
putational tasks, in terms of various resources like time, space, randomness, etc. My research thus
far has been in algebraic complexity theory, where the focus is on tasks that are naturally modeled
as polynomials, like matrix multiplication, determinant, and so on.

For any fixed polynomial, perhaps the most natural way to quantify the cost of computing
it is to ask, “how many additions and multiplications are required to compute its value on any input?”.
The computational model of algebraic circuits captures precisely this intuition. An algebraic circuit
starts with the variables and constants (from some field), and builds a polynomial syntactically
using additions and multiplications. The cost of computing any fixed polynomial, is then captured
by the smallest circuit — one that uses fewest operations — computing it.

In algebraic circuit complexity, we usually deal with polynomials whose degree depends poly-
nomially ' on the number of variables, which are sometimes called low-degree polynomials. Therefore
the complexity of a polynomial, size of the smallest circuit computing it, is generally expressed
solely in terms of the number of variables it depends on. The “easy polynomials” are therefore
n-variate (low-degree) polynomials that have circuits of size poly(n) computing them. It can be
shown that a random polynomial — each of whose coefficients is picked uniformly at random
— is a hard polynomial with high probability. This brings us to the following central question in
algebraic circuit complexity, that of finding explicit hard polynomials.

Lower Bounds: Find an explicit n-variate polynomial (for every n € IN) that requires circuits
of size n(Y) to compute it.

Valiant, in his foundational work [Val79], formalized the notions of efficiently computable polyno-
mials and efficiently definable polynomials, which are now denoted by the complexity classes VP
and VNP, respectively. The class VP exactly matches our above definition of “easy polynomials”,
and the class VNP turns out to be a good analogue for the class of “explicit polynomials”, thus
translating the lower bounds question to a succinct one: “Is VP = VNP”?
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Let us now shift our perspective, and ask “given a circuit, what can be said about the polynomial it
computes?”. Perhaps the simplest task of this kind is to determine whether or not the given circuit
computes just the zero polynomial; this is called the identity testing question.

It is a well-known fact that any nonzero n-variate degree d polynomial evaluates to a nonzero
value at a random point from a large enough “grid”, e.g. [2d]", with high probability [Ore22, DL78,
Zip79, 5ch80]. This fact immediately gives an efficient randomized algorithm for the identity test-
ing question, even for those low-degree polynomials that may not have small circuits. Therefore
it is reasonable to expect a “derandomization” of this algorithm at least for VP, with a determin-
istic identity test that runs in time polynomial in the size of the input circuit. Additionally, the
above randomized algorithm is also a blackbox polynomial identity test (blackbox PIT), that is it only
evaluates the given circuit at some points, as opposed to a whitebox PIT, which can also access the
underlying graph of the circuit. Therefore, an interesting question is whether VP has an efficient,
deterministic, blackbox PIT.

As it turns out, if we are designing a deterministic blackbox PIT, then we can do away with the
power of adaptive querying, thus reducing the task to that of finding the corresponding set of
evaluation points, a hitting set. Formally, a set of evaluation points H is said to be hitting set for a
class of polynomials C, if for every nonzero f € C there is some point 1 € H such that f(h) # 0.
Just as in the case of hard polynomials, a random set of poly(s) many evaluation points is a hitting
set for circuits of size s [HS80, For14]. The challenge is therefore to find an explicit hitting set of

small size, as stated below.

Hitting Sets: Find an explicit hitting set of size poly(n, d, s) for the class of n-variate, degree
d polynomials that are computed by circuits of size s.

Current Status The previously mentioned work of Valiant [Val79] is widely regarded as the be-
ginning of algebraic circuit complexity, and there has been a fair amount of progress in the area
since then. It is therefore surprising that the progress on both the questions mentioned above has
been marginal. We do not know of any explicit polynomial that requires circuits of size n'%!; the
best known lower bound is Q)(nlogn) [Str73, BS83]. At the same time, the best known explicit
hitting sets for circuits have exponential size, which are just large enough grids like [2d]", that use
no information about the complexity of the polynomials. It is therefore natural to first address
these questions in some restricted settings, and then try to infer a strategy to attack the general

questions.

Contributions

My work so far has focused on understanding some of the interesting restricted settings, mostly in
the context of the hitting set question, and furthermore in investigating the challenges in solving
the general questions. In particular, I have been part of the following contributions to algebraic

circuit complexity.



¢ Extending the scope of known constructions: One way to make progress on the identity
testing front is to show that the explicit hitting sets given by known techniques in fact give
hitting sets for a larger class. In a joint work with Saptharishi [ST18], we show that the
known hitting set constructions [AGKS15, GKST15, GKS16] for the class of non-commutative
ABPs, in fact extend to the class of unique parse tree (UPT) circuits [LMP16], a model known
to be strictly more powerful than ABPs.

¢ Near-optimal hitting sets from minuscule improvements: As mentioned before, the best
known hitting sets for n-variate, degree d, size s circuits have exponential size, dom A
natural question here is to ask what happens if we are able to make a minuscule improve-
ment in the exponent, say hitting sets of size s19 for bivariate, size s, degree s circuits (or
formulas), for all large s? In a joint work with Kumar and Saptharishi [KST19], we show
that this will lead to nearly poly(s) sized hitting sets for size s circuits (or formulas, respec-
tively), for all large s. We achieve this by building on the framework of bootstrapping of hitting
sets introduced by Agrawal, Ghosh and Saxena [AGS18], where they had obtained the same
conclusion starting with hitting sets of size at most s*"*” for k-variate, size s circuits, for any

large enough constant k and all large s.

¢ Existence of algebraically natural proofs: The lack of success in questions for algebraic
circuits despite significant progress in several restricted settings has lead to research that in-
vestigates the (in)ability of the current proof strategies to prove strong circuit lower bounds.
Analogous to the work of Razborov and Rudich [RR97] for boolean circuits, Forbes, Shpilka
and Volk [FSV18], and Grochow, Kumar, Saks and Saraf [GKS517] proposed the framework
of algebraically natural proofs, which they showed covers almost all the known strategies for
proving algebraic circuit lower bounds. Using this framework, they showed that if VP — the
class of all poly-sized circuits — has succinct hitting sets, then there are no algebraically natural
proofs against VP. Forbes et al. [FSV18] also provided some evidence against the existence
of natural proofs, by constructing succinct hitting sets for several restricted classes.

However, the question of whether VP indeed has natural proofs still remains open. In a joint
work with Chatterjee, Kumar, Ramya and Saptharishi [CKR "20], we provide some evidence
for the existence of algebraically natural proofs for VP. In particular, we show that when
we restrict ourselves to polynomials that have “moderately large” integer coefficients, there
exist efficiently computable polynomial equations, that can distinguish such polynomials in

VP from many others outside it.

I will now elaborate on these results briefly, before moving on to describe some of the questions

that I would like to explore in the near future.

Hitting Sets for Non-commutative Models

Non-commutative models compute polynomials over variables that do not commute under mul-

tiplication (e.g. xy # yx); monomials are therefore words on the alphabet of the variables. A
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particular use-case could be polynomials that operate on matrices, instead of field scalars. Non-
commutativity restricts the number of different ways in which a monomial can be expressed, and
therefore one expects that it should be relatively easier to obtain lower bounds or PITs for such
models. This indeed turns out to be true.

The seminal work of Nisan [Nis91] that initiated the study of non-commutative models, gives
exponential lower bounds against non-commutative algebraic branching programs (ABPs), a weaker
variant of circuits. Nisan showed that the ABP-complexity of any non-commutative polynomial
is exactly characterized by the rank of its coefficient matrices, an idea very similar to that of a
communication matrix from communication complexity. Building on the Nisan’s characterization,
efficient whitebox PITs and quasipolynomial (n°1°8(") sized hitting sets were obtained for non-
commutative ABPs [RS05, FS13]. An analogous commutative model is that of Read-once Oblivious
ABPs (ROABPs) [FS13], for which similar results have been obtained [AGKS15, GKST15, GKS16].

Recently, Lagarde, Malod and Perifel [LMP16] extended Nisan’s work and obtained an exact
characterization for a model called Unique Parse Tree (UPT) circuits, which they showed lies strictly
between ABPs and circuits in terms of computational power. Their work, combined with a follow-
up work by Lagarde, Limaye and Srinivasan [LL.517], extended the then known lower bounds and
whitebox PITs for ABPs [Nis91, RS05, GKST15] to UPT circuits. However, no non-trivial hitting
set constructions were known for UPT circuits and the corresponding related models.

In a joint work with Saptharishi [ST18], we gave a quasipolynomial time blackbox PIT for UPT
circuits, building on the results of Agrawal, Gurjar, Korwar and Saxena [AGKS15]. We also ex-
tended the other then known hitting set constructions [GKST15, GKS16], for similar counterparts

of UPT circuits and their commutative analogs.

Bootstrapping Hitting Sets

My next work studied the problem of constructing explicit hitting sets for general algebraic cir-
cuits. Apart from its connections to the hardness question, the task of obtaining small explicit
hitting sets for easily computable polynomials is interesting in its own right as a derandomization
problem owing to the crucial use of PITs in well-known results (e.g. [MVV87, LEFKIN90, AKS04]). It
is then slightly surprising that the best known explicit hitting sets for n-variate, degree-d polyno-
mials computable by circuits of size s are as large as d°("), a trivial consequence of the randomized
algorithm, as mentioned before. As a key step towards understanding hitting sets for algebraic
circuits, Agrawal, Ghosh and Saxena [AGS18] observed a surprising phenomenon about hitting
sets that they called bootstrapping.

They essentially showed that if we make a “marginal” improvement in explicit hitting sets
for constant variate circuits, then it would imply hitting sets for algebraic circuits, that are almost
polynomial in size. More formally, they proved that explicit hitting sets of size as large as sk,
for k-variate circuits of size and degree s, for some large constant k and all large s, would imply

explicit hitting sets of size s™(®) for s-variate circuits of size and degree s, for all large s, and a



very slow growing function tiny/(-).
Although their result asked for a fairly mild improvement in the trivial hitting set of size s°),

some natural questions that come up are as follows.
1. Is it possible to replace k>4 by something even closer to k, like k%% or k — 1?
2. Can we start the bootstrapping procedure from a much smaller constant k?
3. Is a similar result true for subclasses of circuits, like formulas or ABPs?

In a joint work with Kumar and Saptharishi [KST19], we built on the techniques of Agrawal
et al. [AGS18] to answer all these questions in the affirmative while maintaining the same con-
clusion and obtained a near-optimal version of their result. We showed that explicit hitting sets
of size as large as s¥~001, for k-variate circuits of size and degree s, for any k > 2 and all large s,
would imply explicit hitting sets of size s™() for s-variate circuits of size and degree s, for all
large s. Furthermore, our statement also holds for subclasses of circuits, i.e. algebraic branching
programs (ABPs) and algebraic formulas, and also works over fields of all characteristics. Both
these things were not known to be true for the result of Agrawal et al. [AGS18].

Proving Lower Bounds

As mentioned before, even the question of proving super-linear lower bounds against circuits
has remained open till now. On the other hand, we have seen several notable achievements in
various restricted models [Yeh19, Sri19, Raz06, Raz10, Nis91, LMP16, GKKS14]. As a result, there
have been attempts at getting a better sense of the ability of the current approaches to prove
lower bounds for algebraic circuits in general, in order to design new approaches that might work
against the general models.

A crucial work of this kind in boolean circuit complexity is that of Razborov and Rudich [RR97]
where they introduced the notion of natural proofs. They showed that most of the then known ap-
proaches to proving boolean circuit lower bounds followed a certain template, which they called
the natural proofs framework. They then went on to show that if sufficiently hard one way functions
exist, then there were no natural proofs against P/ poly, the class of polynomial sized boolean
circuits. Since the existence of such one way functions is widely believed in the community, this
essentially meant that any proof of a super-polynomial boolean circuit lower bound would have
to deviate from the natural proofs framework.

Recently, the works of Grochow, Kumar, Saks and Saraf [GKS517], and Forbes, Shpilka and
Volk [FSV18] adapted the ideas of Razborov and Rudich to the algebraic world, via the notion
of algebraically natural proofs. They showed that most of the current proofs of algebraic circuit
lower bounds are in fact algebraically natural proofs. Additionally, they showed that if VP — the
class of polynomial sized algebraic circuits — had succinct hitting sets, then any proof of a super-

polynomial lower bound must avoid such a template of algebraically natural proofs. As evidence
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against the existence of algebraically natural proofs, Forbes et al. [FSV18] showed that several
known hitting set constructions for restricted models could in fact be made succinct, even with
restricted models.

Interestingly, explicit hitting sets are known to imply (almost) explicit lower bounds [HS80,
Agr05, KI04], which then makes the fact that succinct hitting sets imply a potential barrier towards
proving lower bounds, a bit counter-intuitive. It therefore makes sense to investigate whether the
positive connections ([HS80, Agr05, KI04]) help us obtain any interesting lower bound proofs.

In a joint work with Chatterjee, Kumar, Ramya and Saptharishi [CKR"20], we addressed this
question and gave evidence for the existence of algebraically natural proofs. An algebraically natural
proof against a circuit class C is a non-zero polynomial P that outputs zero, whenever it is fed
the list of coefficients of a polynomial from C, thus “distinguishing” C from other polynomials.
Furthermore, the polynomial itself needs to be computable efficiently. We showed the existence of
such a polynomial P which distinguishes polynomials in VP that have small integer coefficients,
from many other polynomials with small coefficients.

It should be noted that the restriction of small coefficients is only on the polynomial and not
on the circuits. Thus for instance, if one shows that such a “distinguisher” polynomial P does
not vanish on some polynomial in VNP (e.g. permanent), then VP # VNP. Also, while we
give a non-constructive proof of the existence of “efficiently computable distinguishers”, the non-
constructiveness comes solely from the use of non-explicit hitting sets. Thus, with pieces of evi-
dence pointing in either directions, whether or not VP has algebraically natural proofs remains an

interesting open question.

Future Directions

Here are some concrete open questions that are connected to my research till now, which I plan to

investigate in the upcoming years.

¢ Natural Proofs for VP: An obvious question that comes out of the literature on algebraically
natural proofs and related concepts [AD08, GKSS17, FSV18, CKR™20] is whether there are
efficiently computable equations (“distinguishers”) for the class VP. While finding an ex-
plicit equation will almost be as hard as proving super-polynomial lower bounds, can we
expect a proof of existence like that in our recent work? Specifically for the purpose of prov-
ing lower bounds against VP, can we find some other subclass inside VP for which we can

obtain explicit equations?

¢ Constant Variate Circuits: There are several results highlighting the connections between
explicit lower bounds and hitting sets, for poly(n) sized n-variate circuits and poly(n) sized
constant variate circuits [S594, Koill, KST19, GKSS19, And20]. At the same time, few can-
didate approaches are known for proving univariate circuit lower bounds. It is likely that

some facts that are specifically known for univariate polynomials, e.g. Descartes rules of



signs, might help in these questions, and could also potentially lead to new techniques even
for the multivariate setting.

¢ Finer Separations within ROABPs: The simplest model which has resisted efficient hitting
sets, is perhaps that of sums of powers of linear forms, which was introduced by Saxena [Sax08].
Tight lower bounds are known for this model, for a monomial, while the best known hitting

O(loglogn) [FSS14, GKS16]. From the same works, one can obtain a connection

sets have size n
to Read-once Oblivious ABPs (ROABPs), where obtaining poly(s) sized hitting sets for size s
ROABPs on O(logs) variables would give efficient hitting sets for sums of powers of linear
forms. Moreover, the ROABPs that arise from the above connection are just sums of prod-
ucts of univariates. Surprisingly, while this model seems like a heavily restricted subclass of
ROABPs, this is not known to be true. Apart from being an intriguing problem in its own
right, I think such a separation could potentially solve the hitting set question for sums of

powers of linear forms, or at least suggest some approaches for the same.

Branching Out Several ideas that I have come across in algebraic complexity theory are moti-
vated from other areas of theoretical computer science, like pseudorandomness, boolean circuit
complexity, communication complexity, etc. I am therefore excited about understanding these
areas better, and exploring such connections, in the coming years.

Apart from this, my core interest has always been solving problems, with whatever tools and
techniques that are available to me. I am therefore always looking forward to such opportunities,

irrespective of the particular areas that the problems come from.
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