
The Complexity of Order-Finding for ROABPs

Vishwas Bhargava* Pranjal Dutta† Sumanta Ghosh‡ Anamay Tengse§

Abstract

We study the order-finding problem for Read-once Oblivious Algebraic Branching Programs
(ROABPs). Given a polynomial f and a parameter w, the goal is to find an order σ in which f
has an ROABP of width w. We show that this problem is NP-hard in the worst case, even when
the input is a constant degree polynomial that is given in its dense representation. We provide
a reduction from CutWidth to prove these results. Owing to the exactness of our reduction, all
the known results for the hardness of approximation of CutWidth also transfer directly to the
order-finding problem. Additionally, we also show that any constant-approximation algorithm
for the order-finding problem would imply a polynomial time approximation scheme (PTAS)
for it.

On the algorithmic front, we design algorithms that solve the order-finding problem for
generic ROABPs in polynomial time, when the width w is polynomial in the individual de-
gree d of the polynomial f . That is, our algorithm is efficient for most/random ROABPs, and
requires more time only on a lower-dimensional subspace (or subvariety) of ROABPs. Even
when the individual degree is constant, our algorithm runs in time nO(log w) for most/random
ROABPs. This stands in strong contrast to the case of (Boolean) ROBPs, where only heuristic
order-finding algorithms are known.

*vishwas1384@gmail.com. Department of Computing and Mathematical Sciences, Caltech. Part of this work was
done as a postdoc at University of Waterloo, Canada.

†duttpranjal@gmail.com. School of Computing, NUS.
‡besusumanta@gmail.com. Chennai Mathematical Institute.
§anamay.tengse@gmail.com. School of Computer Sciences, NISER, Bhubaneswar. Initial parts of this work were

done when the author was a postdoc at University of Haifa (supported by ISF grant no 716/20) and Reichman Univer-
sity, Herzliya (supported by ISF grant no 843/23).

mailto:vishwas1384@gmail.com
mailto:duttpranjal@gmail.com
mailto:besusumanta@gmail.com
mailto:anamay.tengse@gmail.com

1 Introduction

Read-Once Algebraic Branching Programs (ROABPs) are a well-studied and well-understood
model in algebraic circuit complexity. There are numerous reasons for studying this model, start-
ing with the fact that ROABPs serve as the algebraic analog of ordered ROBPs: Read-Once Branch-
ing Programs, a.k.a. OBDDs. Consequently, Polynomial Identity Testing (PIT) for ROABPs is the
algebraic analog of the fundamental RL vs L problem in derandomization of boolean computation.

Formally, an ROABP R(x1, . . . , xn) for computing f (x) in order σ is a layered, directed graph
with n + 1 layers. The source s and sink t are single vertices in the 0th and nth layers, respectively.
Edges between layers i− 1 and i are labeled by univariate polynomials in xσ(i) of degree at most
d. The polynomial computed by the ROABP is the sum of the products of edge weights along all
paths from s to t.

The structural restriction of being read-once also makes ROABPs the commutative analog of
non-commutative algebraic branching programs (ABPs). Despite this restriction, ROABPs can ef-
ficiently simulate many interesting algebraic models, such as sparse polynomials, set-multilinear
depth-3 circuits, diagonal depth-3 circuits, and polynomials that have polynomially large dimen-
sion of partial derivatives (see e.g. [FS13, BT24]). They can also efficiently compute complex
polynomials like the Iterated Matrix Multiplication (IMM) polynomial [KNS15], which is prov-
ably hard for constant-depth circuits [LST24].

A major motivation for studying ROABPs is the characterization due to Nisan [Nis91] that
precisely describes the ROABP size required for a given variable partition. This characterization
has led to exponential lower bounds, a polynomial-time white-box PIT, and quasipolynomial-time
black-box PITs for ROABPs and their variants (see e.g. [GKST17]). Investigating the structure and
properties of ROABPs has also led to significant advances in other areas of algebraic complexity.
For instance, PITs for bounded top and bottom fan-in depth-4 circuits and ABP upper-bounds for
the border of ΣΠΣ(k) circuits critically rely on the PIT and derandomization results for ROABPs
([DDS21a, DDS21b]).

ROABPs have also proven to be highly useful for designing learning algorithms for various
circuit classes, such as depth-3 powering (∑

∧
∑), set-multilinear depth-3 circuits, and polynomi-

als with polynomially bounded partial derivatives [KS06]. Given an order and black-box access
to a polynomial f , we can (proper-)learn it in randomized polynomial time and deterministic
quasipolynomial time. However, we currently do not know how to learn ROABPs without ad-
ditional information about the ordering of variables. Therefore, it is extremely natural to ask
whether we can design a learning algorithm that operates without this information of an opti-
mal ordering. This question is the primary focus of our work. We begin by demonstrating the
significant role that variable ordering plays in ROABPs.

Fact 1.1 (See e.g. [Raz06, FS13]). The polynomial f (x1, . . . , xn, y1, . . . , yn) := ∏i∈[n](xi + yi), has an

1

ROABP of size 3n + 1 and width 2 in the order (x1, y1, x2, y2, . . . , xn, yn), but requires ROABPs of size
and width 2Ω(n) in the order (x1, . . . , xn, y1, . . . , yn).

Given how the ROABP-size of a polynomial critically depends on the underlying ordering of
the variables, let us formally state the problem of interest.

Question 1.2 (Order finding for ROABP). Given a polynomial f (x1, . . . , xn) of individual degree d, and
a number w ∈N, decide if there exists an order σ ∈ sn in which f has an ROABP of width at most w.

For concreteness, let us fix that the polynomial is given as either as a black-box, or as a circuit
(“white-box” representation). Note that a naïve randomized algorithm for this problem would
take n! · poly(d, w) time by iterating over all the permutations, and checking whether for a par-
ticular partition σ, the ROABP width: RO-widthσ(f) is at most w. But given the algebraic nature
of the problem, and also the aforementioned characterization due to Nisan, it would be unfair to
rule out a more tractable algorithm upfront. This brings us to our results.

1.1 Our Results

Somewhat surprisingly, we show that the order-finding problem is indeed NP-hard, by providing
a polynomial-time Karp reduction from the CutWidth problem (see e.g. [GJ79]) for linear arrange-
ment of graphs.

Theorem 1.3. Given a polynomial f (x1, . . . , xn) with individual degree d, provided either as a black-box or
a circuit, and a number w ∈ N, deciding whether there exists an order σ ∈ Sn such that f has an ROABP
of width at most w is NP-hard.

An important feature of this reduction is that it provides an exact relationship between the
cut-width of the input graph and the ROABP-width of the output polynomial. Concretely, we
show that for any graph G, we can construct a polynomial fG such that RO-widthσ(fG) = 2 +

CutWidthσ(G).
Another important aspect of our construction is that for a graph of degree ∆, fG has a total

degree bounded by 2∆. Combined with the known NP-hardness results for cut-width for graphs
with maximum degree 3, this shows that the hard instances for ROABP order-finding can even be
constant-degree polynomials.

An interesting consequence of our hardness result for order finding is that the corresponding
learning problem and the algebraic circuit minimization problem for ROABPs also become NP-
hard. Recall that in circuit minimization for any circuit class C, we are given a polynomial (as an
algebraic circuit) and a parameter s, and asked if there exists a circuit C ∈ C of size at most s.

Corollary 1.4 (Refer Theorem 4.5). The algebraic circuit minimization problem for ROABPs is NP-hard.

2

Given that the hardness of ROABP order finding is already encapsulated by instances of
constant-degree polynomials, this directly implies the hardness of the algebraic minimum circuit
size problem (MCSP) for ROABPs with constant-degree polynomials. Specifically, given a polyno-
mial f of degree d = O(1) in the dense representation (analogous to the truth table representation
in the Boolean setting), and a parameter w, deciding whether there exists an ROABP computing f
of width w, is NP-complete.

Corollary 1.5 (Refer Theorem 4.2). For a fixed d, the algebraic MCSP for ROABPs is NP-hard.

For precise definitions of these algebraic meta-complexity problems and corresponding results,
see subsection 4.1.

Due to the existence of hard instances in constant-degree polynomials, the above hardness
result is similar to the hardness of set-multilinear depth-3 MCSP and depth-3 powering MCSP
for degree-3 polynomials, which arises from the hardness of tensor decomposition (respectively)
[Hås90, MR13, Shi16]. This contrasts with the recent hardness result of [BDSS24] which crucially
requires high-degree polynomials for their hardness.

Another outcome of the exact relationship between cut-width and ROABP-width is that known
hardness of approximation results for cut-width directly imply the hardness of α-approximation
for order finding in ROABPs. In this context, the objective is to test if there exists an ordering of
variables such that the ROABP-width in that order is less than αw.

Assuming the Small Set Expansion (SSE) conjecture, it is known that cutwidth is hard to ap-
proximate within any constant factor greater than 1 [APW12]. This directly implies that, under
SSE, it is hard to approximate the order-finding problem.

We also provide evidence of the hardness of approximation for RO-order finding without rely-
ing on the strong assumption of SSE. Specifically, we show how to boost the hardness of approx-
imation for RO-order from a small fixed constant to an arbitrary constant. Formally, we demon-
strate that an algorithm capable of approximating order finding within any (fixed) constant can
be converted into a PTAS for the order-finding problem.

Theorem 1.6 (Refer Theorem 7.1). For any constant α, an α-approximation algorithm for finding an
order that minimizes ROABP-width, implies a PTAS for the same problem.

Note that the above result, along with the non-existence of a PTAS for cut-width, would imply
hardness of approximation (HOA) for RO-order unconditionally. Although we could not find such
results for cut-width in the literature. There are known results for the closely related problem of
optimal linear arrangement [AMS11], and we believe that similar results can also be adapted to
cut-width.

On the algorithmic front, we design a randomized algorithm for solving the order-finding
problem for ROABPs. The worst-case complexity of our algorithm is 2n poly(w, d), which is a sig-
nificant improvement over the trivial n! poly(d, w) time required to check all possible orders. We

3

also show that for generic (random) ROABPs, our algorithm runs in polynomial time and outputs
a correct order with high probability. This means our algorithm is efficient for most ROABPs,
requiring additional time only on a lower-dimensional subspace (sub-variety) of ROABPs. This
stands in strong contrast to the case of Boolean ROBPs, where only heuristic order-finding algo-
rithms are known [Weg00, MT98].

Theorem 1.7 (Informal version of Theorem 6.6 and Theorem 6.12). Over any large enough field F,
there is a randomized algorithm R that when given a random (or generic) polynomial f (x) with an ROABP
of width w (in some unknown order) as a black-box, outputs an order which achieves that ROABP-width
for f , with high probability.

Further, the running time of this algorithm is poly(n, d, w) when w = dO(1), and quasi-polynomial
(nO(log w)) when d is constant.

1.2 Ideas behind our proofs

Owing to the simplicity and the linear algebraic nature of Nisan’s characterization, the proofs of
our results are fairly clean. We have therefore tried to describe almost all the key ideas behind
them here.

NP-hardness in the worst case

As alluded to earlier, the motivation for looking at CutWidth as the candidate problem to show the
NP-hardness for order finding (rather, ROABP-width) comes from the hardness result for OBDD-
size [BW96], which provides a reduction from the optimal linear arrangement problem.

The particulars of our reduction are fairly natural, in that given a graph G we wish to design
a polynomial fG with the following property. An optimal linear arrangement of G should corre-
spond to an optimal order for an ROABP of fG, and a natural way to achieve that is to ensure that
the size of each cut in the linear arrangement corresponds to the width in that layer for an optimal
ROABP for fG in that order.

These criteria mean that the variables should correspond to the vertices of the graphs, and
for each edge (u, v) in the graph G, fG should include a “gadget” with the variables xu and xv.
Whenever a set T ⊆ [n] includes exactly one of u and v, each such edge-gadget should ideally
increase the rank of the Nisan matrix MT(F) by a definite amount, so that the rank

(
MT(f)

)
then

corresponds to the size of the cut induced by the vertices in T.
If we just use xuxv as the gadget, it already gives us a unique monomial corresponding to that

edge. But, in order to ensure that all edges incident on xu (that cross the cut) add to the rank by the
same amount, we need to ensure that even the exponent of xu (and xv) in the gadget retains some
information about the edge it came from. This can be achieved by the gadget being xv

uxu
v . Finally,

observing that xu only needs to have degree-of-u many distinct exponents in the final polynomial

4

fG, takes us to the gadget xnu(v)
u xnv(u)

v , where nu(v) is a unique index for v in the set of neighbours
of u. This lets us achieve an individual degree that is essentially the maximum degree of G, and a
total degree that is just twice that. This improvement is crucial in proving NP-hardness of MCSP
for ROABPs, in Corollary 4.8.

Beyond this point, the final reduction (Lemma 4.3) follows after some minor tweaks that are
necessary to handle some corner cases for the choice of the set T.

Order-finding in the average (or generic) case

When designing an algorithm for order-finding, we assume that the width parameter w is given as
an input, and that the input polynomials are promised to have an ROABP in some order of width
w. This is without loss of generality, since we can just search for the correct w, using the proper-
learning (or reconstruction) algorithms in the known-order setting (see Section 6 for details).

On a high level, our algorithm (Algorithm 2) tries to perform a greedy exploration of the space
of all the possible sets T that satisfy rank

(
MT(f)

)
≤ w. Since for a “correct” order σ, any set P

that is prefix of σ does satisfy rank
(

MT(f)
)
≤ w, the goal of this exploration is to find a sequence

of ‘good’ sets of sizes 1, 2, . . . , n− 1, which looks like a sequence of prefixes of some permutation
σ. Such a σ should then be a valid order for a width-w ROABP computing f .

Consider the space of all possible inputs to the order-finding algorithm as above. Every input
polynomial has an ROABP of width w in some order, say that order is σ. What would be bad for
the greedy exploration above, is that a set T that is not a prefix of a “correct” order for f (which
is possibly different from σ), still has rank

(
MT(f)

)
≤ w. Worse even, if several such sets exist,

then the algorithm would have to explore the paths suggested by these sets, only to then abandon
them when they fail.

Now the intuition behind why such an algorithm should run efficiently on a generic input is as
follows. Having small Nisan rank for a set T that is not a prefix of σ should be a “special” property,
and so a generic polynomial with a width-w ROABP in the order σ, should be unlikely to have any
such “special” properties. Phrased in algebraic-geometric terms, this means that for any ‘bad’ set
T and the variety V of polynomials that have a width-w ROABP in the order σ, the polynomials
that additionally have rank

(
MT(f)

)
≤ w form a sub-variety of V of a strictly smaller dimension;

this is precisely Lemma 6.4. This then means that such polynomials form a tiny fraction of V,
and thus, for a large enough (and especially an infinite) field, even the union of all the “special”
sub-varieties corresponding to all the bad sets should still leave out most of the original variety;
this is shown in Lemma 6.5.

All these arguments translate to analogous results over large finite fields, with careful applica-
tions of the Schwartz-Zippel lemma, to give us the running time guarantees. A minor issue is that
when the individual degree d is too small compared to w, any set T that is small enough trivially
achieves a Nisan rank less than w. This means that our exploration has to inevitably explore some

5

‘bad sets’, which give us a super-polynomial running time when d is constant.

PTAS from a constant approximation

Our idea is to simply boost the approximation ratio. This is achieved using a “black-box” trans-
formation on polynomials (Lemma 7.2), that maps any n-variate polynomial f that has a width-w
ROABP in some order, to an n-variate polynomial gk that has a width-wk ROABP in the same
order. In fact, this transformation works for any k, and further, it raises the width in each layer
to the kth exponent. Here, by a “black-box” transformation, we mean that the transformation is
oblivious to what f is, what the order σ is, or what the width w is.

With this transformation, and a constant-approximation algorithm at hand, we obtain a PTAS
as follows. Say the approximation ratio of the algorithm is α. If we want an order that achieves
a width that is at most (1 + ε) times the optimal, we apply the transformation for k ∼ log(1+ε) α,
and run the α-approximation algorithm on gk. We then output the exact same order given by the
approximation algorithm, as the (1 + ε)-approximate order for f . It turns out that this transfor-
mation is simple enough, so that the entire procedure runs in time mO(1/ε) on all inputs of length
m, giving us a polynomial time approximation scheme.

2 Related works

Algorithms for ROABPs Due to the strong structure of ROABPs, algorithms for various prob-
lems involving ROABPs have been extensively studied. For instance, we have a polynomial time
PIT algorithm for ROABPs in the white-box setting [RS05] and a (ndw)O(log n) (quasi-polynomial)
time PIT algorithm in the black-box model [FSS14, AGKS15]. Here, n is the number of vari-
ables, d is the individual degree, and w is the width. Furthermore, there are faster (ndw)O(log log w)

black-box PIT algorithms for subclasses of ROABPs that are order-oblivious (a.k.a. commutative)
ROABPs [GKS17].

Additionally, when provided with black-box access to a polynomial and a variable ordering,
learning ROABPs becomes a tractable problem. Formally, given a variable ordering, an ROABP
can be learned in randomized polynomial time and deterministic quasi-polynomial time, specifi-
cally (ndw)O(log n) [KS06, FS13].

Ordered ROBPs The ROABP class is inspired by the Boolean circuit class of ordered read-once
branching programs (ROBPs), also referred to as Ordered Binary Decision Diagrams (OBDDs).
These classes have been extensively studied due to their connection to the RL vs L problem [Nis90]
which is the central question in space-bounded derandomization.

An ordered ROBP, or OBDD, is a branching program in which the variables are read exactly
once in a fixed, consistent order across all paths from the source to the sink. The program rep-

6

resents Boolean functions as directed acyclic graphs, where nodes correspond to variables, and
edges represent the two possible outcomes for each variable.

Even for ordered ROBPs, the problem of order finding—that is, given an ordered ROBP, deter-
mining whether there exists an ordering with ROBP width at most w—is a natural computational
problem. In fact, this problem has been extensively studied in the Boolean setting.

Numerous works address both the hardness and algorithms for exact as well as approximate
order finding for ROBPs. For instance, it is known that the order finding for OBDDs is NP-hard
[BW96] and even NP-hard to approximate for any constant factor [Sie02]. Despite these hard-
ness results, and due to the importance of OBDDs in both theoretical and practical fields—such
as VLSI design, formal verification, machine learning, and combinatorial problems—numerous
heuristic algorithms have been developed to solve the order-finding problem for OBDDs, see
[Weg00, MT98]. For a comprehensive survey about the study of ordering in OBDDs, we refer
the reader to the beautiful and well detailed book by Wegner [Weg00].

Although ROABPs share an analogous criterion for width as ROBPs, none of these Boolean
results directly imply hardness or algorithmic insights for order-finding in the ROABP setting.
This is because the standard algebraization of a Boolean function can yield significantly different
complexities in ROABPs compared to ROBPs. The key reason for this difference is that the result
analogous to Nisan’s characterization (Theorem 3.6) for OBDDs relies on the number of distinct
sub-functions [Bry86], whereas Nisan’s result is based on their rank (or the dimension of the space
spanned by them). We illustrate this difference with a small example below.

Example 2.1. Consider the function f (a, b, c, d) that evaluates to 1 exactly on the following inputs.

I = {(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 0)}

Any OBDD for f in the order (a, b, c, d) requires width 4 in the second layer, whereas (when viewed as
a multilinear polynomial) f has an ROABP in the order (a, b, c, d) that has width 3 in the second layer. ♢

Nonetheless, these results serve as valuable guides for what we might expect in the algebraic
setting as well. In fact, our use of graph linear arrangement and cutwidth was inspired by re-
ductions for the hardness of order-finding in ROBPs from [BW96]. The idea of boosting a small,
constant hardness to an arbitrary constant hardness also originates in work by [Sie02]. However,
in both of these reductions, we can structure the algebraic instances such that the reductions are
more efficient and conceptually simpler.

It is also worth noting that no rigorous algorithm is known for finding the order for generic or
random OBDDs, indicating some key differences here.

Other NP-Hardness Results in Algebraic Complexity Unlike the Boolean world, only limited
NP-hardness results are known for problems involving algebraic circuits and algebraic compu-
tations. Firstly, there are hardness results regarding (proper) learning of set-multilinear depth-3

7

circuits and depth-3 powering circuits. These results follow directly from the hardness of com-
puting tensor rank (and Waring rank) [Hås90, Shi16], along with standard connections between
tensor rank and set-multilinear depth-3 circuits, and Waring rank with depth-3 powering circuits
[BSV21].

Additionally, there are known hardness results for equivalence testing, which essentially asks
if two polynomials are equivalent up to a change of basis. Kayal [Kay11], and Agrawal-Saxena
[AS06] showed that this problem is as hard as the graph isomorphism problem even for cubic
polynomials!

Recently, [CGS23] demonstrated the NP-hardness of testing whether there exists a shift of a
polynomial that is sparser than the polynomial itself. They showed that this problem is NP-hard
over finite fields and undecidable over the integers.

Even more recently, [BDSS24] showed that, given a sparse polynomial, testing whether it is
equivalent to an s-sparse polynomial under an invertible change of basis is NP-hard. They also
showed that this problem is NP-hard to approximate up to s

1
3 -approximation factor.

Generic Learning Algorithms in Algebraic Complexity It is widely believed that learning (or
reconstruction) problems for most reasonably strong classes of algebraic circuits are hard. Conse-
quently, there has been considerable effort in designing learning algorithms for the generic case.
This focus is partly due to connections with important problems, such as tensor decomposition,
subspace clustering, and learning mixtures of Gaussian [GKS20, CGK+24]. In the generic case, we
assume that the input comes from the space excluding some strictly smaller-dimensional variety.
Naturally, generic algorithms also give average-case algorithms, as a randomly sampled point will
avoid the subvariety with high probability.

We know of generic learning algorithms for several constant depth circuit models such as
homogeneous depth-3, set-multilinear depth-3, generalized depth-3 circuits [KS19, BGKS22] and
also ’sum of power of low-degree polynomials’ [GKS20]. The main idea, as established by the
work of Kayal and Saha [KS19], is to utilize the space of partial derivatives (or shifted partial
derivatives), which has been used to prove circuit lower bounds, and to apply vector decomposi-
tion algorithms on these spaces.

Notably, our learning algorithm for generic ROABPs diverges from this framework, since any
generic algorithm for learning ROABPs would primarily require a general approach for order
finding. Our work examines the relationship between various permissible orderings in generic
ROABPs.

8

3 Preliminaries

Notation

Apart from the conventions of notation that are commonly used, we follow these additional con-
ventions in our paper.

• We use lowercase letters to denote indeterminates, polynomials or scalars from the field,
and use the boldfaced, lowercase versions of the same letters to denote sets or vectors of the
corresponding things. E.g. x = {x1, . . . , xn} , a = {a1, . . . , an}.

We use subscripts on these symbols for variable or polynomial sets to denote a subset. E.g.
xT = {xi : i ∈ T}.

• We use uppercase letters to denote matrices (and numbers that are very large), and use A[i, j]
to denote the (i, j)th entry of the matrix A.

• We use calligraphic uppercase letters for random variables, and use the regular version of
the same letters, lower or uppercase (but never both), to denote their values or realizations.
E.g. the random variables A and P take values A and p.

• For a monomial m, the support of m refers to the number of distinct variables that appear in
the monomial: e.g. xy has support 2, x100 has support 1.

• For a polynomial, its total degree is the maximum degree of any monomial appearing in it,
and its individual degree is the highest power that any individual variable is raised to in any
monomial appearing in it. For instance, an n-variate multilinear polynomial has individual
degree 1, and total degree (possibly) n.

• For a polynomial f , the coefficient vector of f is a list of the coefficients of all its monomials
(even those that are zero) in some predefined order. For instance, for an n-variate, total-
degree d polynomial, the coefficient vector has length (n+d

d), and an n-variate, individual-
degree d polynomial has a coefficient vector of length (d + 1)n.

Linear arrangement problems on graphs. Given a graph G on n vertices, a linear arrangement
of G is a mapping from the vertex set to the points {1, . . . , n}, or, just a permutation of the vertices.
For a linear arrangement σ of a graph G, one can then look at various graph parameters. One
such parameter is the number of edges crossing each of the “induced cuts”:

{
σ−1(1), . . . , σ−1(i)

}
and

{
σ−1(i + 1), . . . , σ−1(n)

}
for each i. The optimal or minimum linear arrangement (OLA or MLA)

asks for an arrangement that minimizes the sum of the sizes of all these cuts, and the CutWidth

problem asks for an arrangement that minimizes the sizes of the largest such cut. We refer the
reader to the survey by Díaz, Petit and Serna [DPS02] for an overview of some well-studied linear
arrangement problems on graphs.

9

3.1 Basics about polynomials and ROABPs

Our proofs repeatedly use the following famous fact about multivariate polynomials, which has
been proven in various guises in several works over the years [Ore22, DL78, Sch80, Zip79].

Lemma 3.1 (Schwartz-Zippel Lemma). Let F be any field, let S ⊆ F be arbitrary, and suppose f (x)
is an n-variate polynomial with total degree d. Then, for independent a1, a2, . . . , an sampled uniformly at
random from S, Pr[f (a1, . . . , an) = 0] ≤ d/|S|.

Definition 3.2 (Read-once Oblivious ABP (ROABP)). Let F be any field. Let n, d ∈ N be arbitrary, let
σ ∈ sn be a permutation, and consider an n-variate polynomial f (x) of individual degree d.

An ROABP R(x) computing f (x) in the order σ is a layered, directed graph with n + 1 layers of
vertices, with the leftmost (0th) and the rightmost (nth) layers having single vertices, called the source s and
the sink t. All edges in the graph are only between layers i− 1 and i for i ∈ [n] labelled from left to right.
Further, the weights on all the edges between layers i− 1 and i are univariate polynomials of degree at most
d in the variable xσ(i).

Similar to an algebraic branching program (ABP), the polynomial computed by the ROABP is the sum
of the polynomials computed along the different s to t paths, where each path computes the products of the
weights of the edges contained in it.

The size of an ROABP is said to be the total number of vertices in it, and the width of an ROABP is
the maximum number of vertices it has in any layer. ♢

Using the adjacency matrices of the sets of edges between all pairs of consecutive layers of an
ROABP, we get an equivalent matrix view defined below.

Definition 3.3 (ROABP (matrix view)). Let F be any field. For any n, d, w ∈ N, a permutation σ ∈ sn,
and an n-variate polynomial f (x) of individual degree d, we say that it has a width w ROABP in the order
σ, if there exist matrices

{
Ai,j
}

with entries in F for all i ∈ [n] and 0 ≤ j ≤ d, such that the following
holds.

For w0 = wn = 1, there are numbers w1, w2, . . . , wn−1 ≤ w, so that for each i ∈ [j], Ai,j ∈ Fwi−1×wi

for all j ∈ {0, 1, . . . , d}, and

f (x) =
(

Lσ(1)(xσ(1)) · Lσ(2)(xσ(2)) · · · Lσ(n)(xσ(n))
)
[1, 1],

where for all i ∈ [n],

Li(xi) = Ai,0 + Ai,1xi + Ai,2x2
i + · · ·+ Ai,dxd

i .

We call the matrices
{

Ai,j
}

the coefficient matrices of the ROABP. ♢

Definition 3.4 (Prefixes of a permutation). For a permutation σ ∈ sn on n letters, we say that a set
T ⊆ [n] is a prefix of (or with respect to) σ if T = {σ(1), σ(2), . . . , σ(i)} for some i ∈ [n]. ♢

Definition 3.5 (Nisan matrix). For an n-variate polynomial f (x) ∈ F[x] of individual degree d, and a
subset T ⊆ [n], the Nisan matrix of f with respect to T is a (d + 1)|T| × (d + 1)n−|T| matrix denoted

10

by MT(f), with rows labelled by monomials in the variables xT, and columns labelled by the monomials in
x[n]\T, and the (m, m′)th entry of this matrix is MT(f)[m, m′] = coeff f (m ·m′). ♢

Theorem 3.6 (Nisan’s characterization [Nis91]). Let F be any field. For any n ∈ N and any permuta-
tion σ ∈ sn, let ∅, T1, T2, . . . , Tn−1, [n] be the prefixes of σ of lengths 0, 1, 2, . . . , n− 1, n, respectively.

Then for any n-variate polynomial f (x) ∈ F[x], the optimal ROABP for f in the order σ has exactly
rank

(
MTi(f)

)
vertices in the ith layer (after “reading” first i variables). Thus, the optimal ROABP has

width exactly maxi∈[n] rank
(

MTi(f)
)
, and size exactly ∑i∈[n] rank

(
MTi(f)

)
.

3.2 Generic and random ROABPs

Generic Conditions: A generic point of an algebraic variety V ⊆ FN is one that lies outside any
proper closed subset of V defined by additional algebraic conditions. In other words, it avoids
the "special" sub-varieties where additional polynomial relations hold, meaning it satisfies the
"general" conditions that are typical of most points on V.

Thus, for F being either the field of rational, real or complex numbers, we consider the variety
formed by the coefficient vectors of length (d + 1)n of all n-variate, individual degree d polynomials
that have an ROABP of width w in some order σ (see Section 6.1). Thus, by a generic ROABP (of
a certain width in a certain order), we simply mean that the coefficient vector is generic and does
not come from a strict subvariety of the above variety. It turns out that over any infinite field and
for some well-behaved varieties, if we sample a random ROABP, it will be a generic ROABP with
high probability. We formalize the notion of a random ROABP below (as it is more amenable for
computer science applications).

Definition 3.7 (Random ROABP). Let F be any field, and let n, d, w ∈ N, σ ∈ sn, and S ⊆ F be
arbitrary. Define random variables A⃗ =

{
Ai,j
}

i∈[n],j∈{0,1,...,d}, where each Ai,j ∈ Fw×w each of whose
entries is sampled independently and uniformly at random from S. This then gives us a random variable
PS,n,d,w,σ, which is the polynomial computed by the ROABP given by

PS,n,d,w,σ(x1, . . . , xn) :=

(
∏

i∈[n]

(
d

∑
j=0
Ai,j · x

j
σ(i)

))
[1, 1].

We call this random variable PS,n,d,w,σ a random n-variate ROABP of individual degree d of width
w in the order σ over the set S. That is, the distribution on the realizations of this random variable is
induced by the uniform distribution over S in the entries of all the Ai,js.

We drop the subscripts S, n, d, w, σ and just write P when those details are clear from the context. ♢

Remark 3.8. Note that Definition 3.7 can be defined analogously for other “standard” distributions the
entries of the coefficient matrices. The only criterion is that these distributions should follow an analogue of
the Schwartz-Zippel lemma Lemma 3.1. ♢

11

Observation 3.9. For any valid F, σ, n, d, w, the coefficients of Pn,d,w,σ are homogeneous multilinear poly-
nomials in the random variables A⃗ of total degree exactly n.

Proof. The claim follows by observing that for any monomial m = xe1
1 xe2

2 . . . xen
n , its coefficient in P

is exactly

coeffP (m) =

(
∏

i∈[n]
Ai,ei

)
[1, 1].

3.3 Useful facts about ROABPs

We start by stating the following facts about Nisan matrices, which are essentially facts about the
ranks of Kronecker products and sums of matrices.

Observation 3.10 (Properties of Nisan matrices). For polynomials f (x1, . . . , xn), g(y1, . . . , yn) and
subsets T, U ⊆ [n], we have the following.

1. For h(z1, . . . , z2n) := f (z1, . . . , zn) · g(zn+1, . . . , z2n) and U′ := {n + u : u ∈ U},
rank

(
MT∪U′(h)

)
= rank

(
MT(f)

)
· rank

(
MU(g)

)
.

2. For h(z1, . . . , zn) := f (z1, . . . , zn) + g(z1, . . . , zn),
rank

(
MT(h)

)
≤ rank

(
MT(f)

)
+ rank

(
MT(g)

)
.

Lemma 3.11 (Evaluation dimension and Nisan matrix). Suppose f (x) ∈ F[x] be an n-variate polyno-
mial with individual degree d. Let T ⊆ [n] be any subset and S ⊂ F with at least (d + 1) elements. Define
a matrix ET(f) with (d + 1)|T| rows and (d + 1)(n−|T|) columns, indexed by evaluation points from S|T|

and S(n−|T|), respectively; the entries of ET(f) are: ET(f)[α, β] = f (xT = α, x([n]\T) = β).
Then, rank(ET(f)) = rank

(
MT(f)

)
.

Proof sketch. Let S =
{

s1, . . . , s(d+1)

}
, and suppose VS is the (d + 1) × (d + 1) Van der Monde

matrix, with V[i, j] = sj−1
i . Then the proof follows from the fact that ET = V⊗|T|S ·MT ·

(
VT

S
)⊗|T|,

where A⊗k is the k-wise Kronecker/tensor product of the matrix A with itself.

Lemma 3.12 (Estimating Nisan rank using PIT). Let n, d, w ∈ N be arbitrary, and let S ⊆ F be any
set of field constants. Suppose f (x) ∈ F[x] is an n-variate polynomial of individual degree d, and T ⊆ [n]
is of size k.

Then for α1, α2, . . . , αw+1 ∈ Sk and β1, β2, . . . , βw+1 ∈ Sn−k drawn uniformly at random, the (w +

1) × (w + 1) matrix Ê with Ê[i, j] = f (xT = αi, x[n]\T = β j) for each i, j ∈ [w + 1], has a nonzero
determinant if and only rank

(
MT(f)

)
> w, with probability at least nd(w + 1)2/|S|.

Proof. Let us define a (w + 1) × (w + 1) matrix E0, with polynomials in the “fresh” variables
y1, . . . , yw+1 and z1, . . . , zw+1 as entries. In particular, E0[i, j] = f (xT = yi, x[n]\T = zj) for each i, j ∈

12

[w + 1]. The determinant of this matrix is a nonzero polynomial, if and only if rank
(

MT(f)
)
> w,

because we can substitute the yis and the zjs appropriately, from Lemma 3.11. Further, the total
degree of this determinant is deg(f) · (w + 1)2 ≤ nd · (w + 1)2.

Therefore, checking whether the rank
(

MT(f)
)
> w reduces to the PIT of this determinant.

By the Schwartz-Zippel lemma (Lemma 3.1), this is the same as testing if the determinant of the
random matrix E is nonzero, as claimed.

4 Worst case NP-hardness

This section is devoted to proving the NP-hardness of Question 1.2 in the worst case as stated be-
low. When the total degree is constant, we obtain an NP-hardness result for testing ROABP width,
even when the polynomial is provided in its dense representation1. We also get an analogous result
for when the degree grows with n, the only difference being that then the dense representation
has size that is nω(1), and hence we have to switch to the sparse representation. We now formally
define the corresponding languages.

Definition 4.1 (Problems around finding ROABP-width). For every positive integer d, we define the
language DenseROwidth-d, to contain tuples (coeff(f), w), where coeff(f) is the vector of the (n+d

d) =

nO(d) coefficients of an n-variate, total-degree-d polynomial f , and w ∈ N, such that f has an ROABP of
width w in some order.

We define the language CktROwidth to contain 4-tuples (C, n, d, w), where n, d ∈ N are given in
unary, w ∈ N is given in binary, and C is the description of an n-variate, degree-d polynomial f repre-
sented as an algebraic circuit, such that f has an ROABP of width w in some order.

The search version of these problems: Search-DenseROwidth-d and Search-CktROwidth are defined
analogously, where the parameter w is not provided as an input, and an algorithm solving the problem is
expected to output an order σ that achieves the optimal ROABP-width. ♢

Theorem 4.2. For any integer d ≥ 6, the language DenseROwidth-d is NP-hard under polynomial-time
Karp reductions.

In order to prove the above theorem, we provide a polynomial-time (Karp) reduction from the
CutWidth problem, defined for graphs (see e.g. [DPS02]). An important feature of this reduction
is that it provides an exact relationship between the cut-width of the input graph and the ROABP-
width of the output polynomial.

Lemma 4.3 (Reduction from CutWidth). Given a graph G = (V, E) with n vertices, m edges, and max-
imum degree ∆ there is a deterministic polynomial-time algorithm that outputs a polynomial f (x1, . . . , xn)

of individual degree d = ∆ + 1 with n + m monomials, with the following property.
1Dense representation of f lists only the coefficients of all the monomials of f in some pre-determined order; such a

representation is suited for a polynomial that is dense: has many monomials. On the other hand, sparse representation of
f lists pairs of monomials and their coefficients, which is ideal for a sparse polynomial.

13

There is an ROABP of width w + 2 in an order σ ∈ sn if and only if the linear arrangement of G in
the order σ has CutWidth w.

Proof. Fix V = [n]. For every u ∈ V, let nu(v) ∈ [∆] denote a number that uniquely identifies
v within the neighborhood of u (denoted Nbr(u)). One canonical way of fixing nu(v) is just by
fixing an order on the vertices, and then for every u ∈ V defining nu(v) in increasing order.

For i ∈ [m] and ei = {u, v} ∈ E, define the monomial fi(xu, xv) = xnu(v)
u · xnv(u)

v , and let

fG(x) := ∑
v∈[n]

x∆+1
v + ∑

i∈[m]

fi = ∑
i∈[n]

x∆+1
i + ∑

i∈[m]

xnu(v)
u xnv(u)

v .

Note that fG has a monomial for each edge along with an ∑i∈[n] x∆+1
i ‘gadget‘. Its support size is

constant (2), individual degree is ∆ + 1, and total degree is 2∆.
The proof of the lemma follows directly from the following claim using Nisan’s characteriza-

tion (Theorem 3.6).

Claim 4.4. For any non-trivial partition A ⊔ B = [n], we have rank
(

MA(fG)
)
= 2 + cG(A, B) where

cG(A, B) is the number of edges in G that have one endpoint in A and another in B.

Proof. rank(MA,B
fG

) ≤ 2 + cG(A, B): The bound follows from the following description of fG as a

sum of 2 + cG(A, B) variable disjoint (w.r.t A, B) products.

fG(x) = ∑
ei={u,v}⊂A

xnu(v)
u xnv(u)

v + ∑
v∈A

x∆+1
v

+ ∑
ej={u,v}⊂B

xnu(v)
u xnv(u)

v + ∑
v∈B

x∆+1
v

+ ∑
ek={u,v}
u∈A,v∈B

xnu(v)
u xnv(u)

v .

That is, the first and second terms contribute rank 1 each, and the last term contributes at
most cG(A, B).

rank(MA,B
f) ≥ 2 + cG(A, B): To show this, we exhibit a permutation matrix of dimension cG(A, B)

that is a submatrix of MA,B(f), along with 2 rows that lie in a disjoint space. First, let us
partition the edges into three sets; L : edges with both endpoints in A, R : edges with both
endpoints in B, and C : edges that have exactly one endpoint in each A and B.

Now consider the submatrix defined by the following: for each edge ei = {u, v} ∈ C, select
the row indexed by xnu(v)

u and the column indexed by xnv(u)
v . Note that, by construction, for

each row in this submatrix, there is exactly one column with a non-zero entry. The corre-
sponding coefficient is also 1, thus forming a permutation matrix.

14

Further, the row corresponding to any other monomials in fG: coming from edges in L, or
x∆+1

i for i ∈ A, have the entry 1 (in MA,B(fG)) corresponding to the constant polynomial in
the column index, and zeroes in all other columns. Similarly, the columns indexed by edges
in R or x∆+1

i for i ∈ B, have a 1 (in MA,B(fG)) in row indexed by the constant polynomial,
and zeroes everywhere else. Thus, those monomials cumulatively give an additional 2-
dimensional row-space disjoint from the cG(A, B)-dimensional row-space that we get from
the permutation submatrix discussed above.

Clearly, fG has total degree 2∆(G), has exactly m + n monomials, and since all the nonzero
coefficients are 1, its dense representation has size nO(∆(G)), and its sparse representation has size
at most poly(n, m). Further, both these representations can easily be computed in time poly(n, m)

from the graph G.

Proof of Theorem 4.2. With the reduction outlined in Lemma 4.3, the theorem follows from the
fact that CutWidth is NP-hard under polynomial-time Karp reductions for planar graphs with
maximum-degree 3 [MS88], as the dense representation then has size poly(n).

Owing to the exactness of our reduction from the Cut-width problem, even when the total
degree of the polynomial is growing (precisely when the graph G has degree ω(1)), the polynomial
fG has the appropriate ROABP-width. However, it is no longer possible to output the dense
representation in time poly(n) just because its length would be nω(1). Thus, we only get the NP-
hardness result for the sparse representation, as stated below.

Theorem 4.5. The language CktROwidth is NP-hard under polynomial-time Karp reductions.

Proof. As the polynomial fG generated by the reduction in Lemma 4.3 has at most n+m, support-2
monomials of individual degree at most d = ∆(G) + 1 ≤ n + 1 with all nonzero coefficients being
just 1, it can be represented as a sum of monomials with O((n + m) · 2 log d) = O(n2 log n) bits.
The theorem is then a direct result of CutWidth being NP-hard for general undirected, unweighted
graphs.

4.1 Algebraic MCSP

The Minimum Circuit Size Problem (MCSP) is a decision problem in which the input consists of
the truth table of an n-variate Boolean function and a parameter s ∈ N. The goal is to decide
whether f is computable by a circuit of size at most s. Whether MCSP for general Boolean circuits
is NP-hard remains a long-standing open question with intriguing connections to cryptography,
learning theory, average-case complexity, and proof complexity. For more details, see, for instance,
[Hir22, Ila21] and the references therein.

For restricted circuit classes C, one can define C-MCSP, which asks whether, given a Boolean
function (as a truth table) and s ∈ N, there exists a circuit C ∈ C of size at most s. It is known

15

that MCSP is NP-hard (under deterministic polynomial-time reductions) for DNF [Mas79] and
DNF ◦ XOR formulas [HOS18]. However, no NP-hardness result is known (under deterministic
polynomial-time reductions) for more general circuit models such as AC0 circuits.

We now describe the minimum circuit size problem (MCSP) in the algebraic setting. Instead
of a truth table for a Boolean function, you are given the complete coefficient vector of a polyno-
mial. Specifically, for an n-variate polynomial of total degree d, you are provided with all (n+d

d)

coefficients. Alternatively, one could define the input as the evaluations of the polynomial at an
interpolating set; note that it is possible to convert between these representations in polynomial
time.

Furthermore, as in the Boolean setting, we can specialize this question to specific circuit classes
C. Here, the problem is to determine if there exists a circuit of size s in C.

Below, we provide a formal definition for any algebraic circuit class C.

Definition 4.6 (Algebraic MCSP for C). Given an n-variate polynomial f of degree d along with its
coefficient vector of (n+d

d) field coefficients and a parameter s ∈N, decide if there exists an algebraic circuit
C in C of size s that computes f . ♢

Another related problem in meta-complexity is the Circuit Minimization Problem. The key dif-
ference between circuit minimization and MCSP is that in circuit minimization, you are provided
with an explicit representation of the function (a circuit computing f) that is usually polynomial
in n size, and you are asked if there exists a circuit computing f with size less than s. See, for
instance, [BU11] and the references therein.

We can similarly define the algebraic version of the circuit minimization problem.

Definition 4.7 (Algebraic Circuit Minimization for C). Given an n-variate polynomial f of degree d, a
circuit of size s′ computing f , and a parameter s ∈ N, decide if there exists an algebraic circuit C in C of
size s that computes f . ♢

Note that the input size here is poly(n, d, s′). It is intuitive to think that the circuit minimiza-
tion problem may be harder than MCSP, indeed any algorithm for circuit minimization already
implies a fast algorithm for MCSP. Thus making it easier to show NP-hardness results for circuit
minimization.

An interesting distinction to note is that circuit minimization in the Boolean world is a Σ2-
complete problem. However, in the algebraic world, it lies within the class MA, due to the ap-
plication of Polynomial Identity Testing (PIT). Specifically, given a candidate algebraic circuit, we
can efficiently verify its correctness in randomized polynomial time. See [BDSS24] for a more
elaborate discussion on this.

Researchers in meta-complexity and algebraic complexity have been exploring the algebraic
MCSP for some time now. Despite these efforts, not much is known, although some prelimi-
nary observations have been made in recent works by Baraskar et al. [BDSS24] and Belova et al.
[BGK+23].

16

On the hardness of algebraic MCSP for special subclasses, one can obtain NP-hardness results
for set-multilinear depth-3 circuits and depth-3 powering circuits essentially for free. This is a
direct consequence of the hardness of computing tensor rank (and Waring rank) [Hås90, Shi16],
along with standard connections between tensor and set-multilinear depth-3 circuits and Waring
rank with depth-3 powering circuits [BSV21].

Recently, a beautiful work by Baraskar et al. [BDSS24] showed circuit minimization for the
orbit of sparse polynomials, which is a special subclass of depth-3 circuits. They established the
hardness of this problem via a natural reduction from SAT. However, their work only provides
hardness results for circuit minimization within this class and fails to imply the hardness of Alge-
braic MCSP. A reason for this is that the reduction in the work by [BDSS24] also genuinely requires
high-degree polynomials, making all dense representations very verbose and insufficient to imply
the hardness of MCSP.

As a direct consequence of the NP-hardness of order finding for ROABPs, we can deduce
hardness for circuit minimization and Algebraic MCSP for ROABPs. This is because, contrary to
the hard instance of [BDSS24], our hardness can arise even from constant-degree polynomials. We
state these observations formally below.

Corollary 4.8 (Circuit Minimization / Algebraic MCSP for ROABPs is NP-hard). The following are
true over any field F.

• The algebraic circuit minimization problem for ROABPs is NP-hard. That is, given an n-variate
polynomial f of degree d, a circuit of size s′ computing f , and a parameter w ∈N, deciding whether
there exists an ROABP C of width at most w that computes f is NP-hard.

• For a fixed d ∈N, algebraic MCSP for ROABPs is NP-hard. That is, given an n-variate polynomial
f of degree d along with its coefficient vector of (n+d

d) field coefficients and a parameter w ∈ N,
deciding whether there exists an ROABP C in C of width at most w that computes f is NP-hard.

Proof. Note that the existence of an ROABP of width less than w directly implies that there exists
an order under which the ROABP width is less than w. Thus, by Theorem 4.5 and Theorem 4.2,
we obtain NP-hardness for ROABP circuit minimization and ROABP MCSP, respectively.

5 Algorithm for order finding

We now describe a procedure (Algorithm 2) that solves the order finding problem when given an
n-variate, individual degree d polynomial f (x) as a “black-box” (algorithm can query f at any set
of points). The algorithm solves a slightly different problem, in that it is given the width w as a
parameter. It should be noted that this is essentially the same problem for the case of ROABPs,
since given a purported order σ and a black-box for f , there is a randomized polynomial time
algorithm for reconstructing an ROABP for f in the order σ (see Section 2). Therefore, if w is

17

not provided as an input, we could just guess a w and run our algorithm. If it fails or output an
incorrect order, we infer that our guess for w was wrong. This gives a straight-forward way to
perform a binary search for the correct w.

Our algorithm runs in two stages. In the first stage, it populates the list of all sets T such that
rank

(
MT(f)

)
≤ w, and in the second stage, it views this list as a graph (i.e. a subgraph of the

Hasse diagram of the boolean hypercube) to then find a path in it from ∅ to [n] which reads out
an order τ in which the input polynomial has a width-w ROABP. As the second stage is just a
standard DFS, we provide an explicit algorithm for the first stage in Algorithm 1, and only outline
the other parts.

The algorithm runs in deterministic time 2O(n) ·poly(d, w) in the worst case, which is consistent
with the order finding problem being NP-hard for some settings of the parameters, as shown in
Section 4. In Section 6, we show that Algorithm 2 runs in randomized time nO(log(d+1) w) ·poly(d, w)

with high probability when the input is a random polynomial with an ROABP of width w in some
order, as in Definition 3.7.

Algorithm 1: POPULATEGRAPH

Input : Parameters n, d, w and the polynomial f (x) ∼ PS,n,d,w,σ given as a blackbox.
Output: Families L1, . . . , Ln−1 of subsets T with rank

(
MT(f)

)
≤ w, categorized by size.

1 Set k← 1 // Size of the subsets to be tested
2 Set L0 ← {∅} // List of “good” subsets of size 0
3 Set C ← ∅ // Initialize the collection to be finally output

4 while k < n do

5 Lk ← ∅ // Initialize the list of subsets of size k

/* Try and extend every subset from Lk−1 */
6 for T0 ∈ Lk−1 do
7 for i ∈ [n] do
8 Set T ← T0
9 if i ̸∈ T then

10 Set T ← T ∪ {i}
/* We check the Nisan rank using Lemma 3.12 */
/* The PIT uses the same set S as in PS,n,d,w,σ */

11 if T ̸∈ Lk and rank
(

MT(f)
)
≤ w then

12 Set Lk ← Lk ∪ {T}

13 Set C ← C ∪ {Lk}
14 Set k← k + 1

15 return C

18

Algorithm 2: FINDORDER

Input : Parameters n, d, w and the polynomial f (x) ∼ PS,n,d,w,σ given as a blackbox.
Output: Permutation τ such that f has an ROABP of width w in the order τ (w.h.p.).

1 Let C = PopulateGraph(n, d, w, f)
2 Generate a graph G using C
/* Vertex set of G is the union of L0, L1, . . . , Ln. */
/* There is an edge from T to T′, if T′ = T ∪ {t} for some t ∈ [n] \ T. */

3 Let (∅, T1, T2, . . . , Tn−1, [n]) be a path in G // Found using, say a DFS of G
4 Set τ: τ(i) = t if and only if Ti = Ti−1 ∪ t, for each i ∈ [n]

5 return τ

6 Complexity in the generic and average case

We now turn to showing that “on average”, Algorithm 2 runs in time that is much better than 2n

with high probability. In particular, it runs in randomized time nO(logd+1 w) poly(d, w) for n-variate,
individual degree d polynomials that have ROABPs of width w; this running time is polynomial
when w = poly(d), and quasi-polynomial even when d is a constant and w = poly(n).

We start by outlining the key ideas using the language of generic ROABPs, and then extend
the same arguments to the random case (see Section 3.2 for the formal definitions).

6.1 The generic case

The simple intuition here is as follows. We expect the order-finding algorithm to work better in
the generic case, because for any order σ, a generic polynomial that has a “small” ROABP in that
order does not satisfy any additional conditions, essentially by definition. What then remains to
check is that having a low-rank Nisan matrix MT(f) for a set T that is “not consistent with σ” is
indeed an additional, or rather an independent, condition. We prove this in Lemma 6.4.

We use some elementary concepts from algebraic geometry (e.g. algebraic varieties) in this
subsection. While the intuitive meaning of these concepts should be clear from the discussion
below, we point the reader to any text on algebraic geometry (e.g. [CLO07]) for the formal defini-
tions.

Definition 6.1 (Varieties from Nisan matrices). Let F be the field of rational, real or complex numbers.
For any n, d, w ∈ N and T ⊆ [n], we define for N := (d + 1)n, the set Vw,T ⊆ FN to be the smallest
algebraic variety that contains the coefficient vectors of all n-variate polynomials individual degree d that
satisfy rank

(
MT(f)

)
≤ w.

Note that Vw,T is generated by the (w + 1)× (w + 1) minors of the Nisan matrix MT(). That is, every
point in f ∈ Vw,T is a common zero of all those minors (which are polynomials in coefficients of f). ♢

Analogously, we define the variety of polynomials that have ROABPs of some width in some

19

fixed order. This is precisely the variety of “generic ROABPs”.

Definition 6.2 (Generic polynomials with ROABPs). Let F be the field of rational, real or complex
numbers. For any n, d, w ∈ N and σ ∈ sn, we define for N := (d + 1)n, the set Vw,σ ⊆ FN to be the
smallest algebraic variety that contains the coefficient vectors of all n-variate polynomials individual degree
d that have an ROABP of width w in the order σ. ♢

The following relation between Vw,σ and the appropriate Vw,Ts is an immediate consequence
of Nisan’s characterization (Theorem 3.6). Note that Vw,∅ and Vw,[n] are trivial varieties.

Observation 6.3. For any w ∈ N, σ ∈ sn, let T1, T2, . . . , Tn−1, Tn = [n] be the prefixes of σ as defined in
Definition 3.4. Then, Vw,σ = Vw,T1 ∩Vw,T2 ∩ · · · ∩Vw,Tn−1 .

In the language of the varieties defined above, the statement “having a small rank under a
partition that is not consistent with σ is an additional condition” is formalized as follows.

Lemma 6.4. Let σ ∈ sn be an arbitrary permutation, and let n, d, w ∈ N be any integers satisfying
n ≥ 3 · log(d+1) w.

Then for any size r such that k ≤ r ≤ n− k, where k :=
⌊

log(d+1) w
⌋
+ 1, and for any set T such that

neither T nor [n] \ T is a prefix of σ, we have that Vw,σ ∩Vw,T ⊊ Vw,σ.

We will prove the lemma (at the end of Section 6.2) by showing the existence of a polynomial
f (x) that lies in Vw,σ, but not in Vw,T. In other words, we construct (for every valid choice of the
parameters) a polynomial f that has a width-w ROABP in the order σ but has rank

(
MT(f)

)
> w.

We do this in two steps. First, we construct such a polynomial for σ = id and for some structured
set T in Lemma 6.7. We then show how the same construction can be generalized to all sets of
appropriate sizes, and all orders in Lemma 6.9.

Using Lemma 6.4, we can now say that the varieties corresponding to the “inconsistent parti-
tions” do not cover the variety Vw,σ.

Lemma 6.5. Let F be Q, R or C. Let σ ∈ sn be an arbitrary permutation, and let n, d, w ∈ N be any
integers satisfying n ≥ 3 · log(d+1) w.

Suppose T is the family of all sets T such that neither T nor [n] \ T is a prefix of σ, and k ≤ |T| ≤ n− k,
where k :=

⌊
log(d+1) w

⌋
+ 1. Then Vw,σ ̸⊂

⋃
T∈T Vw,T.

Proof. Using the definition of a random ROABP (Definition 3.7), notice that the coefficient vectors
in Vw,σ are polynomials in the entries of the coefficient matrices. This means that there is a poly-
nomial map P : FM → FN , for M = n(d + 1)w2 and N = (d + 1)n, which maps the entries of the
coefficient matrices to coefficient vectors inside Vw,σ. Since FM is an irreducible2 variety, so is Vw,σ.

Therefore, Lemma 6.4 tells us that the dimension of Vw,σ ∩ Vw,T is strictly smaller than that of
Vw,σ. Finally, since T is a finite collection (and F is infinite), we cannot cover Vw,σ using finitely
many varieties of strictly smaller dimensions.

2A variety is irreducible if it cannot be written as a union of two strictly smaller varieties.

20

Theorem 6.6 (Finding an optimal order in the generic case). Let F be the field of rational, real or
complex numbers. Let σ ∈ sn be an arbitrary permutation, and let n, d and w be any positive integers
satisfying n ≥ 3 · log(d+1) w.

Then there is a randomized algorithm R that, when given a generic n-variate polynomial f (x) of indi-
vidual degree d that has an ROABP of width w in the order σ as a black-box, outputs some τ ∈ sn, such
that f has an ROABP of width at most w in the order τ.

Further, with high probability, the running time of R is nO(log(d+1) w) · poly(d, w).

Proof. The algorithm R is exactly3 the order finding algorithm outlined in Algorithm 2.
By Lemma 6.5, a generic polynomial exhibits Nisan matrices of rank strictly more than w for

any T that is “not consistent” with the order σ. Thus, the algorithm PopulateGraph (Algorithm 1)
generates lists L1, . . . , Ln−1, such that for log(d+1) w < k < n− log(d+1) w, |Lk| ≤ 2.

Next, note that Algorithm 1 performs an identity test as described in Lemma 3.12 at most
n · |Lk| times, for each 0 ≤ k ≤ n − 1. This is because Algorithm 1 only attempts to extend the
sets that the previous iteration has generated. Therefore, with probability at least (1− 2−n), the
algorithm performs at most

[
2(n− 2 log(d+1) w) + 2 · log(d+1) w · (n

log(d+1) w)
]
< 2n identity tests,

each of which fails with probability at most nd(w + 1)2/|S| ≤ 2−2n, when S is chosen to be appropri-
ately large. Thus, the probability that all these PITs succeed, is at least (1− 2n2−2n), by the union
bound. Therefore, R runs in time nO(log(d+1) w) and outputs a correct order with probability at least
(1− 2−n)2 ≥ 1− 2n−1.

We remark that since MT(f) has (d + 1)|T| rows, rank
(

MT(f)
)
≤ (d + 1)|T| for any f . Thus,

any set T of size at most k = logd+1 w results in a Nisan matrix of rank at most w, and therefore,
the factor of nO(log(d+1) w) is unavoidable in the running time for Algorithm 1.

6.2 Constructing the polynomials

Lemma 6.7. Let F be any field, and n, d and w be any positive integers satisfying n ≥ 3 · log(d+1) w.
Suppose T ∈ [n] satisfies the following three properties.

1. T has a reasonable size:
⌊

log(d+1) w
⌋
+ 1 ≤ |T| ≤ n/2.

2. T is “left-heavy”: |T ∩ {1, . . . , ⌊n/2⌋}| ≥ |T ∩ {⌊n/2⌋+ 1, . . . , n}|.

3. T is not a prefix with respect to id: T ̸= {1, . . . , |T|}.

Then there exists an n-variate, individual-degree d polynomial f (x) ∈ F[x] that has a width w ROABP in
the order id, but satisfies rank

(
MT(f)

)
> w.

3The only tiny change is that since we do not have a predefined set S ⊆ F, the rank-estimation has to choose such a
set, which is taken to be

{
1, . . . , 22n+1ndw2}.

21

1 ni1 j1 i2 j2 1 nj1 i1 i2 j2

1 ni1 i2 j1 j2

Figure 1: Examples of good (top) and bad (bottom) choices for (i1, j1) and (i2, j2).

Proof. Let k =
⌊

log(d+1) w
⌋
+ 1, so that k ≤ |T| ≤ n/2. We will define a polynomial f that depends

only on 2k of the n variables, split into two sets: L and R of size k each. For L = {i1, i2, . . . , ik} and
R = {j1, j2, . . . , jk}, we will then define

f (x) = ∏
ℓ∈[k]

(
1 + xiℓxjℓ + x2

iℓx
2
jℓ + · · ·+ xd

iℓx
d
jℓ

)
The idea here is to choose L and R in a way that ensures that: first, L ⊆ T and R ⊆ [n] \ T,
and second, any prefix of id (or its complement) fully contains some pair (iℓ, jℓ). These conditions
would then ensure that rank

(
MT(f)

)
= (d + 1)k = (d + 1)⌊log(d+1) w⌋+1 > w, and that for all

i ∈ [n], rank
(

M[i](f)
)
≤ (d + 1)k−1 ≤ w, as required (see Observation 3.10).

We now describe how we can choose such sets L and R.
Observe that if (i1, j1) and (i2, j2) are such that the first pair is completely “on the left” of the

second (that is max(i1, j1) < min(i2, j2), see Figure 1), then we would ensure the second condition.
Therefore, it is enough to show that such indices i1, j1 and i2, j2 exist with respect to any set T that
satisfies the three properties in the hypothesis.

We choose i1 to be the smallest index in T and j1 to be the smallest index that is outside T.
Similarly, we choose i2 to be the largest index in T and j2 to be the largest index outside T.

Since i1 < i2 and j1 < j2 by definition, we only need to show that i1 < j2 and j1 < i2. As T is
left heavy, i1 < n/2 and further since |T| ≤ n/2, j2 > n/2, thus i1 < j2. Also, j1 > i2 is possible
only if T = {1, . . . , |T|}, which contradicts T not being a prefix with respect to id.

Finally, we choose i3, . . . , ik arbitrarily from T, and j3, . . . , jk arbitrarily from [n] \ T. This is fine,
since our choice of the first two pairs already ensures that rank

(
M[i](f)

)
≤ w for any i ∈ [n], and

since T contains exactly half of all the k pairs being chosen, rank
(

MT(f)
)
= (d + 1)k > w. This

finishes the proof using Nisan’s characterization (Theorem 3.6).

Remark 6.8. Actually, the left-heaviness of the set T can be relaxed. That is, if T is right-heavy instead,
then we would “flip” the choice of i1, j1, i2 and j2 “about the middle”, by choosing i1, j1 to be the largest
indices inside and outside T and i2, j2 to be the smallest indices inside and outside T. One just needs to

22

“reflect the argument” about n/2: the first pair is to the right of the second pair and so on, for the proof to
work. We skip the details to keep the proof simpler. ♢

Next, we extend the above result to all sets T that do not trivially lead to rank
(

MT(f)
)
≤ w

when the order is id. This essentially boils down to working with either T or T = [n] \ T, and with
id or rev(id), to ensure that the hypothesis of Lemma 6.7. This extension then lets us bound the
probability that a random polynomial with an ROABP in the order id has small Nisan-rank for an
“incorrect” set T, as follows.

Lemma 6.9. Let n, d and w be any positive integers satisfying n ≥ 3 · log(d+1) w, and let σ ∈ sn be

arbitrary. Suppose T ⊆ [n] is such that k ≤ |T| ≤ n− k for k :=
⌊

log(d+1) w
⌋
+ 1, and neither T nor

([n] \ T) is a prefix with respect to σ.
Then there exists an n-variate, individual-degree d polynomial f (x) that has a width w ROABP in the

order σ, but satisfies rank
(

MT(f)
)
> w.

Proof. We can assume σ = id by just renaming the variables in f and the indices in T to adjust for σ.
That is, for τ = σ−1, if T satisfies the hypothesis of the lemma for σ, then τ(T) = {τ(t) : t ∈ T} sat-
isfies the hypothesis for id, and if f (x1, . . . , xn) satisfies the conclusion for T, then f (xτ(1), . . . , xτ(n))

satisfies the lemma for τ(T).
We now argue that we can make some simplifying assumptions on T so that we can then

invoke Lemma 6.7.

• |T| ≤ n/2: If this is not the case, then we work with the complement T = [n] \ T, since
rank

(
MT(f)

)
= rank

(
MT(f)

)
for any polynomial f and any set T.

• |T ∩ {1, . . . , ⌊n/2⌋}| ≥ |T ∩ {⌊n/2⌋+ 1, . . . , n}|: If this is not the case, then we “reverse all
coordinates” by applying the permutation rev(id) and work with the reversed set rev(T) =
{(n + 1)− i : i ∈ T}. Again, this is without loss of generality, since for any permutation
σ ∈ sn, the set of polynomials that have an ROABP of width w in the order σ is exactly the
same as the same set corresponding to rev(σ), as a direct consequence of Theorem 3.6. Refer
to Remark 6.8 for further details on this assumption.

Now, since T (or [n] \ T) was not a prefix with respect to id, we get that the simplified T is not
a prefix with respect to id. Thus, we can apply Lemma 6.7 to obtain an f (x) ∈ F[x] such that
rank

(
MT(f)

)
> w.

Proof of Lemma 6.4. We use Lemma 6.9 to find a polynomial f (x) that has an ROABP of width w in
the order σ, but has rank

(
MT(f)

)
> w. Thus, the coefficient vector of f is a point in Vw,σ that is

not inside Vw,T, and therefore Vw,σ ∩Vw,T ⊊ Vw,σ.

23

6.3 Finding order of a random ROABP

We now give the “average case” analogues of our results in Section 6.1. At a high level, these
results are obtained by carefully applying the Schwartz-Zippel lemma (Lemma 3.1) to bound the
probabilities of a random ROABP (see Definition 3.7) satisfying any additional conditions that are
not satisfied by a generic ROABP. An upshot of this exercise is that this allows us to talk about
a random ROABP that is sampled to have coefficient matrices coming from large enough finite
fields.

Lemma 6.10. Let S ⊆ F be any set of size 22n+1 · n · w, let σ ∈ sn be an arbitrary permutation, and let
n, d and w be any positive integers satisfying n ≥ 3 · log(d+1) w.

Then for any size r such that k ≤ r ≤ n− k for k :=
⌊

log(d+1) w
⌋
+ 1, and for a set T such that neither

T nor [n] \ T is a prefix of σ, the probability that the random ROABP PS,n,d,w,σ has rank
(

MT(P)
)
≤ w,

is at most 2−2n.

Proof. For any polynomial f , we use coeff(f) to denote the vector of coefficients of f .
First, we use Lemma 6.9 to find a polynomial f (x) that has an ROABP of width w in the order σ,

but has rank
(

MT(f)
)
> w. Now let h0 be a (d+ 1)n-variate polynomial that is a (w+ 1)× (w+ 1)

minor of the Nisan matrix for T (viewing the coefficients of the polynomial as variables) MT, such
that h0(coeff(f)) ̸= 0. Such a minor, and thus the corresponding h0, exists precisely because
rank

(
MT(f)

)
> w.

Now consider substituting the coefficients of PS,n,d,w,σ: coeff(P), in h0. Since h0 is a polynomial
of degree (w + 1) in these coefficients, and the coefficients are polynomials of degree n in the
entries of the random matrices

{
Ai,j
}

(see Observation 3.9), their composition is a polynomial of
degree n(w + 1) in the entries of

{
Ai,j
}

. Name this composed polynomial g(A⃗).
Note that g(A⃗) is a nonzero polynomial, since there is a realization of the variables that pre-

cisely yields the width-w ROABP for f (x) in the order id, and the coefficient vector of f is not a
root of h0. This gives us the following bound on the probability of rank

(
MT(P)

)
≤ w, as claimed.

Pr
A⃗

[
rank

(
MT(P)

)
≤ w

]
= Pr
A⃗

 ∧
h is a (w + 1)× (w + 1) minor of MT

h(coeff(P)) = 0

(h0 is one such minor) ≤ Pr

A⃗

[
h0(coeff(P)) = 0

]
(Substituting for coeff(P)) = Pr

A⃗

[
g(A⃗) = 0

]
(Schwartz-Zippel lemma) ≤ deg(g)

|S| ≤ 2nw
|S| ≤ 2−2n

Lemma 6.11. Let S ⊆ F be any set of size ≥ 22n+1 · n · w, let σ ∈ sn be an arbitrary permutation, and let
n, d and w be any positive integers satisfying n ≥ 3 · log(d+1) w.

24

Then for k =
⌊

log(d+1) w
⌋
+ 1, and any r such that k ≤ r ≤ n− k the probability that the list Lr in

Algorithm 1 has size greater than 2 for a random f (x) ∼ PS,n,d,w,σ(x), is at most 2−n.

Proof. Observe that for any fixed set T of size r that satisfies the hypothesis, we can just invoke
Lemma 6.10 to derive that the probability that rank

(
MT(P)

)
≤ w is at most 2nw/|F| = 2−2n. Then

by the union bound, the probability that any such set T exists is at most 2n · 2−2n = 2−n.
As P(x) has a width-w ROABP, each list Lr in Algorithm 1 has size at least 2, corresponding

to the prefixes with respect to the order σ and the complement of that prefix. If |Lr| > 2 for the
given parameters, then there exists a subset T such that neither T nor [n] \ T is a prefix of σ, with
rank

(
MT(f)

)
≤ w. The probability that such a set T is at most 2−n, from the argument above.

Theorem 6.12 (Finding an optimal order in the average case). Over any large enough field F, let
S ⊆ F be of size ≥ 22n+1 · (ndw2), let σ ∈ sn be an arbitrary permutation, and let n, d and w be any
positive integers satisfying n ≥ 3 · log(d+1) w.

Then there is a randomized algorithm R that, when given a random polynomial f ∼ PS,n,d,w,σ as a
black-box, outputs some τ ∈ sn, such that f has an ROABP of width at most w in the order τ, with
probability at least (1− 2n−1).

Further, with probability at least (1− 2n−1), R runs in time nO(log(d+1)w) · poly(d, w).

Proof. The algorithm R is the order-finding algorithm outlined in Algorithm 2. By Lemma 6.11,
with probability at least (1− 2−n), the algorithm PopulateGraph (Algorithm 1) generates lists
L1, . . . , Ln−1, such that for log(d+1) w < k < n− log(d+1) w, |Lk| ≤ 2.

Next, note that Algorithm 1 performs an identity test as described in Lemma 3.12 at most
n · |Lk| for each 0 ≤ k ≤ n− 1. This is because Algorithm 1 only attempts to extend the sets that
the previous iteration has generated. Therefore, with probability at least (1− 2−n), the algorithm
performs at most 2(n− 2 log(d+1) w) + 2 · log(d+1) w · (n

log(d+1) w) identity tests, each of which fails

with probability at most nd(w + 1)2/|S| ≤ 2−2n. Thus, the probability that all these PITs succeed, is
at least (1− 2n2−2n), by the union bound, and hence R runs in the promised time and outputs a
correct order, with probability at least (1− 2−n)2 ≥ 1− 2n−1, as required.

7 Approximate order finding

As mentioned earlier, since CutWidth is known to be hard to approximate up to any constant factor
assuming the Small Set Expansion (SSE) conjecture [APW12]. However, one can still ask if the
hardness of approximation for ROABP-width follows from a more widely believed assumption.

There are two relevant results in this regard. First is a hardness of approximation (under
P ̸= NP) result for approximating the OBDD-size of a boolean function, due to Sieling [Sie02];
however this result is quite technical, and it is unclear to us if it implies such a result for ROABP-
width (or size). The other result is due to Ambühl, Mastrolilli and Svensson [AMS11], which

25

rules out a PTAS for the minimum/optimal linear arrangement problem, under the assumption that
NP ̸⊆ SUBEXP. Again, due to the exactness of our reduction from width of any cut in a linear
arrangement to the width of the ROABP in the corresponding layer (see Lemma 4.3), this result
directly rules out a PTAS for ROABP-size.

Turning to the problem of finding an order that approximates the optimal ROABP-width, we
(the authors) do not know of a hardness result that rules out a constant approximation algorithm,
or even a PTAS, for the CutWidth problem, under any stronger assumption that the SSE conjecture.

7.1 Constant-factor Approximation implies a PTAS

We show that for any constant α, an α-approximation algorithm for Search-CktROwidth implies a
PTAS for it, which is formally stated below. Thus, combined with our reduction from CutWidth

to ROABP-width, any result that rules out a PTAS for CutWidth under any strong assumption(s),
would also rule out any constant-factor approximation algorithm for ROABP-width.

Theorem 7.1. Suppose for a constant α > 1 that ApproxWidth is a deterministic polynomial time al-
gorithm, which when given the tuple (C, n, d) — where C is an algebraic circuit computing an n-variate
polynomial f (x) of individual degree d — outputs an order σ such that f has an ROABP of width w∗ in
the order σ, and w∗ is at most α times the optimal ROABP-width of f (x).

Then, there is a deterministic algorithm WidthPTAS, that takes as input (C, n, d, ε) (where C, n, d are as
above), and outputs an order σ such that the ROABP-width of the polynomial computed by f in the order
σ, is at most (1 + ε) times its optimal ROABP-width. Further, this algorithm runs in time mOα(1/ε) on all
inputs of length m.

We prove the following lemma, which gives a way of multiplicatively increasing the optimal
ROABP-width of a polynomial with an easy transformation.

Lemma 7.2 (Tensoring ROABP width). Over any field F, let f (x1, . . . , xn) ∈ F[x] be a polynomial with
individual degree d, and let σ ∈ sn be arbitrary. Suppose the optimal ROABP-width for f in the order σ is
w, then the following polynomial has width wk in the order σ, for any integer k ≥ 1.

g(x) := f (x1, . . . , xn) · f (xd+1
1 , . . . , xd+1

n) · · · · · f
(

x(d+1)k−1

1 , . . . , x(d+1)k−1

n

)
We introduce below the concept of a lifted partition to prove the theorem.

Definition 7.3 (Lifted partitions). Let Y = Y1 ∪ Y2 ∪ · · · ∪ Yn be a set of variables containing n blocks:
Yi = {yi,1, . . . , yi,k} for each i ∈ [n]. We call a partition Y = S ⊔ T lifted, if for each Yi, either Yi ⊆ S or
Yi ⊆ T.

In other words, a lifted partition S ⊔ T has an underlying partition A ⊔ B = [n] such that S and T are
exactly the unions of the blocks in A and B respectively. ♢

26

Along the lines on Observation 3.10, lifted partitions let us increase the optimal ROABP-width
multiplicatively.

Lemma 7.4. For a polynomial f (x1, . . . , xn) and any integer k ≥ 1, let hk(Y) be

hk(Y) := f (y1,1, . . . , yn,1) · f (y1,2, . . . , yn,2) · · · f (y1,k, . . . , yn,k),

with Y = Y1 ∪Y2 ∪ · · · ∪Yn, and each Yi = {yi,1, . . . , yi,k}.
Suppose X = S ⊔ T is a lifted partition, where the underlying partition is [n] = A ⊔ B. Then, if the

rank
(

MA(f)
)
= w, then rank

(
MS(hk)

)
= wk.

Proof. Let M = M(A,B)(f), then we show that M(S,T)(hk) is precisely the Kronecker (or “tensor”)
product M⊗k = M⊗M⊗ · · · ⊗M.

To see this, let m = ∏i∈A(∏ℓ∈[k] yai,ℓ
i,ℓ) be a monomial over the variables in the set S:

⋃
i∈A Yi,

and similarly, let m′ = ∏j∈B(∏ℓ∈[k] y
bj,ℓ
j,ℓ) be a monomial over the variables in the set T. Then, by

definition of hk, coeffhk(m ·m′) = ∏ℓ∈[k] coeff f

(
∏i∈A yai,ℓ

i,ℓ ·∏j∈B y
bj,ℓ
j,ℓ

)
. This essentially means that

M(S,T)(hk)[m, m′] = ∏ℓ∈[k] M(A,B)(f)[mℓ, m′ℓ], where mℓ = ∏i∈A yai,ℓ
i,ℓ and m′ℓ is defined analogously.

This is exactly the same as saying M(S,T)(hk) = (M(A,B)(f))⊗k. This finishes the proof.

Proof of Lemma 7.2. First, define the polynomial hk from f , in a similar manner as in Lemma 7.4.
Therefore, for the unique F-linear map µ : F[Y] → F[x] that satisfies µ : yi,j 7→ x(d+1)j−1

i for all yi,j,
we have that g(x) = µ(hk).

Thus, since the individual degree of hk is d, for any monomial m0 = ∏i∈[n] ∏j∈[k] y
ei,j
i,j , there is a

unique corresponding monomial m = ∏i∈[n] ∏j∈[k] x
ei,j·(d+1)j−1

i , such that coeffg(m) = coeffhk(m0).
Therefore, the map µ is a bijection between the monomials of hk and g. This means that for any
partition [n] = A ⊔ B, the matrices M(A,B)(g) and M(S,T)(hk) are exactly the same, up to renaming
their rows and columns, under the corresponding lifted partition (S, T). So the rank(M(A,B)(g)) is
exactly the k-th power of the rank of the Nisan matrix of f under the partition (A, B).

Since the rank of every Nisan matrix has been raised to the power k in the transformation from
f to g, the width of an optimal ROABP for g under any order σ is exactly the k-th power of that
for f , using Nisan’s characterization (Theorem 3.6).

Proof of Theorem 7.1. We first describe the algorithm WidthPTAS and then argue its correctness and
running time. Suppose the input is (C, n, d, ε), where C computes the polynomial f (x1, . . . , xn).

1. Let k = ⌈ log α/log(1 + ε)⌉.

2. Define C̃(x) := C(x1, . . . , xn) · C
(

x(d+1)
1 , . . . , x(d+1)

n

)
· · ·C

(
x(d+1)k−1

1 , . . . , x(d+1)k−1

n

)
.

3. Let w∗ = ApproxWidth(C̃, n, dk) for dk = (d + 1)k − 1.

4. Compute ŵ = (w∗)1/k, and return ŵ.

27

Correctness. Suppose the optimal ROABP width of the input f (x) is w. From Lemma 7.2, it is
clear that the polynomial computed by C̃ has ROABP-width exactly wk, whenever f (x) has width
w. Since we are assured that w∗ ≤ α · wk, ŵ = (w∗)1/k ≤ α1/k · w. Therefore, ŵ ≤ α log(1 + ε)/log α · w,
which is at most (1 + ε)w, as required.

Running time. Suppose ApproxWidth runs in time at most ma on any input of length m. The only
non-trivial step of the above algorithm is that of computing the circuit C̃. Such an algebraic circuit
has size at most k (size(C) + 2k log(d + 1)), using ‘repeated-squaring’ gadgets for computing the
appropriate powers of the xis. So size(C̃) ≤ Oα((1/ε)2 · size(C)), where the hidden constant de-
pends on the approximation ratio α of ApproxWidth. Next, the length of the unary representation
for (d + 1)k − 1 has length dO(k) = dOα(1/ε). Thus, step 3 runs ApproxWidth on an input of length at
most mβ·(1/ε)

0 , where m0 is the length of the input (C, n, d) and β is a constant dependent on α. The
algorithm WidthPTAS thus runs in time at most ma·β·(1/ε)

0 . This finishes the proof.

Open questions

We conclude with the following questions that we feel are natural to explore from here about the
order-finding problem.

• Does Algorithm 1 run in randomized polynomial time in the average case for fields of size
poly(n, d, w)? That is, is there a different argument that shows such a result?

• Are there efficient algorithms that approximate ROABP-width up to a poly(w, n, d) approx-
imation factor?

Acknowledgements

We thank the organizers of STOC 2022, where a subset of the authors first discussed this problem
and made some preliminary progress. VB also thanks Valentine Kabanets for their insightful dis-
cussions during a workshop on algebraic complexity in Dagstuhl, and he thanks the organizers of
the workshop for facilitating this meeting.

References

[AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-Sets for
ROABP and Sum of Set-Multilinear Circuits. SIAM Journal of Computing, 44(3):669–697,
2015. Pre-print available at arXiv:1406.7535. [Cited on page 6.]

28

http://dx.doi.org/10.1137/140975103
http://dx.doi.org/10.1137/140975103
http://arxiv.org/abs/1406.7535

[AMS11] Christoph Ambühl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability Results
for Maximum Edge Biclique, Minimum Linear Arrangement, and Sparsest Cut. SIAM
Journal on Computing, 40(2):567–596, 2011. [Cited on pages 3 and 25.]

[APW12] Per Austrin, Toniann Pitassi, and Yu Wu. Inapproximability of Treewidth, One-Shot
Pebbling, and Related Layout Problems. In Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques - 15th International Workshop, APPROX
2012, and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August
15-17, 2012. Proceedings, volume 7408 of Lecture Notes in Computer Science, pages 13–24.
Springer, 2012. [Cited on pages 3 and 25.]

[AS06] Manindra Agrawal and Nitin Saxena. Equivalence of-algebras and cubic forms. In
Annual Symposium on Theoretical Aspects of Computer Science, pages 115–126. Springer,
2006. [Cited on page 8.]

[BDSS24] Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha. NP-Hardness of
Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials. In
51st International Colloquium on Automata, Languages, and Programming, ICALP 2024, July
8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 16:1–16:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2024. [Cited on pages 3, 8, 16, and 17.]

[BGK+23] Tatiana Belova, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin, and Denil
Sharipov. Polynomial formulations as a barrier for reduction-based hardness proofs.
In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023, pages 3245–3281. SIAM, 2023. [Cited on page 16.]

[BGKS22] Vishwas Bhargava, Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning Gen-
eralized Depth Three Arithmetic Circuits in the Non-Degenerate Case. In Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign,
USA (Virtual Conference), volume 245 of LIPIcs, pages 21:1–21:22. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. [Cited on page 8.]

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986. [Cited on page 7.]

[BSV21] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction algorithms
for low-rank tensors and depth-3 multilinear circuits. In STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages
809–822. ACM, 2021. [Cited on pages 8 and 17.]

29

http://dx.doi.org/10.1137/080729256
http://dx.doi.org/10.1137/080729256
http://dx.doi.org/10.1007/978-3-642-32512-0_2
http://dx.doi.org/10.1007/978-3-642-32512-0_2
http://dx.doi.org/10.4230/LIPICS.ICALP.2024.16
http://dx.doi.org/10.4230/LIPICS.ICALP.2024.16
http://dx.doi.org/10.1137/1.9781611977554.CH124
http://dx.doi.org/10.4230/LIPICS.APPROX/RANDOM.2022.21
http://dx.doi.org/10.4230/LIPICS.APPROX/RANDOM.2022.21
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1145/3406325.3451096
http://dx.doi.org/10.1145/3406325.3451096

[BT24] Vishwas Bhargava and Anamay Tengse. Explicit Commutative ROABPs from Partial
Derivatives. CoRR, abs/2407.10143, 2024. Pre-print available at arXiv:2407.10143.
[Cited on page 1.]

[BU11] David Buchfuhrer and Christopher Umans. The complexity of boolean formula min-
imization. Journal of Computer and System Sciences, 77(1):142–153, 2011. [Cited on

page 16.]

[BW96] Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs is NP-
complete. IEEE Transactions on computers, 45(9):993–1002, 1996. [Cited on pages 4

and 7.]

[CGK+24] Pritam Chandra, Ankit Garg, Neeraj Kayal, Kunal Mittal, and Tanmay Sinha. Learn-
ing Arithmetic Formulas in the Presence of Noise: A General Framework and Appli-
cations to Unsupervised Learning. In 15th Innovations in Theoretical Computer Science
Conference, ITCS 2024, January 30 to February 2, 2024, Berkeley, CA, USA, volume 287
of LIPIcs, pages 25:1–25:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.
[Cited on page 8.]

[CGS23] Suryajith Chillara, Coral Grichener, and Amir Shpilka. On Hardness of Testing Equiva-
lence to Sparse Polynomials Under Shifts. In 40th International Symposium on Theoretical
Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume
254 of LIPIcs, pages 22:1–22:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023. [Cited on page 8.]

[CLO07] David A. Cox, John B. Little, and Donal O’Shea. Ideals, Varieties and Algorithms. Under-
graduate texts in mathematics. Springer, 2007. [Cited on page 19.]

[DDS21a] Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Demystifying the border of depth-3
algebraic circuits. In Proceedings of the 62nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2021), 2021. [Cited on page 1.]

[DDS21b] Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Deterministic Identity Testing
Paradigms for Bounded Top-Fanin Depth-4 Circuits. In 36th Computational Complex-
ity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference),
volume 200 of LIPIcs, pages 11:1–11:27. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2021. [Cited on page 1.]

[DL78] Richard A. DeMillo and Richard J. Lipton. A Probabilistic Remark on Algebraic Pro-
gram Testing. Information Processing Letters, 7(4):193–195, 1978. [Cited on page 10.]

30

http://dx.doi.org/10.48550/ARXIV.2407.10143
http://dx.doi.org/10.48550/ARXIV.2407.10143
http://arxiv.org/abs/2407.10143
http://dx.doi.org/10.4230/LIPICS.ITCS.2024.25
http://dx.doi.org/10.4230/LIPICS.ITCS.2024.25
http://dx.doi.org/10.4230/LIPICS.ITCS.2024.25
http://dx.doi.org/10.4230/LIPIcs.STACS.2023.22
http://dx.doi.org/10.4230/LIPIcs.STACS.2023.22
http://dx.doi.org/10.1007/978-0-387-35651-8
https://www.cse.iitk.ac.in/users/nitin/papers/border-depth3.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/border-depth3.pdf
http://dx.doi.org/10.4230/LIPICS.CCC.2021.11
http://dx.doi.org/10.4230/LIPICS.CCC.2021.11
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1016/0020-0190(78)90067-4

[DPS02] Josep Díaz, Jordi Petit, and Maria Serna. A survey of graph layout problems. ACM
Comput. Surv., 34(3):313–356, September 2002. [Cited on pages 9 and 13.]

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-Time Identity Testing of Non-
commutative and Read-Once Oblivious Algebraic Branching Programs. In Proceedings
of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013),
pages 243–252, 2013. Full version at arXiv:1209.2408. [Cited on pages 1 and 6.]

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multi-
linear read-once algebraic branching programs, in any order. In Proceedings of the 46th
Annual ACM Symposium on Theory of Computing (STOC 2014), pages 867–875, 2014.
[Cited on page 6.]

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., USA, 1979. [Cited on page 2.]

[GKS17] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity Testing for Constant-Width,
and Commutative, Read-Once Oblivious ABPs. Theory of Computing, 13(1):1–21, 2017.
Preliminary version in the 31st Annual Computational Complexity Conference (CCC 2016).
arXiv:1601.08031. [Cited on page 6.]

[GKS20] Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree
polynomials in the non-degenerate case. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 889–
899. IEEE, 2020. [Cited on page 8.]

[GKST17] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic Iden-
tity Testing for Sum of Read-once Oblivious Arithmetic Branching Programs. Compu-
tational Complexity, 26(4):835–880, 2017. Preliminary version in the 30th Annual Compu-
tational Complexity Conference (CCC 2015). arXiv:1411.7341. [Cited on page 1.]

[Hås90] Johan Håstad. Tensor Rank is NP-Complete. J. Algorithms, 11(4):644–654, 1990. [Cited
on pages 3, 8, and 17.]

[Hir22] Shuichi Hirahara. NP-Hardness of Learning Programs and Partial MCSP. In 63rd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO,
USA, October 31 - November 3, 2022, pages 968–979. IEEE, 2022. [Cited on page 15.]

[HOS18] Shuichi Hirahara, Igor C. Oliveira, and Rahul Santhanam. NP-hardness of Minimum
Circuit Size Problem for OR-AND-MOD Circuits. In 33rd Computational Complexity
Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs,

31

http://dx.doi.org/10.1145/568522.568523
http://dx.doi.org/10.1109/FOCS.2013.34
http://dx.doi.org/10.1109/FOCS.2013.34
http://arxiv.org/abs/1209.2408
http://dx.doi.org/10.1145/2591796.2591816
http://dx.doi.org/10.1145/2591796.2591816
http://dx.doi.org/10.4086/toc.2017.v013a002
http://dx.doi.org/10.4086/toc.2017.v013a002
http://arxiv.org/abs/1601.08031
http://dx.doi.org/10.1007/s00037-016-0141-z
http://dx.doi.org/10.1007/s00037-016-0141-z
http://arxiv.org/abs/1411.7341
http://dx.doi.org/10.1016/0196-6774(90)90014-6
http://dx.doi.org/10.1109/FOCS54457.2022.00095
http://dx.doi.org/10.4230/LIPICS.CCC.2018.5
http://dx.doi.org/10.4230/LIPICS.CCC.2018.5

pages 5:1–5:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. [Cited on

page 16.]

[Ila21] Rahul Ilango. The Minimum Formula Size Problem is (ETH) Hard. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 427–432. IEEE, 2021. [Cited on page 15.]

[Kay11] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence
problem. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1409–
1421. SIAM, 2011. [Cited on page 8.]

[KNS15] Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between Read-once Oblivi-
ous Algebraic Branching Programs (ROABPs) and Multilinear Depth Three Circuits.
Electronic Colloquium on Computational Complexity (ECCC), 22:154, 2015. [Cited on

page 1.]

[KS06] Adam R. Klivans and Amir Shpilka. Learning Restricted Models of Arithmetic Cir-
cuits. Theory of Computing, 2(10):185–206, 2006. Preliminary version in the 16th Annual
Conference on Computational Learning Theory (COLT 2003). [Cited on pages 1 and 6.]

[KS19] Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous
depth three circuits. In Proceedings of the 51st Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 413–424. ACM,
2019. [Cited on page 8.]

[LST24] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial Lower
Bounds Against Low-Depth Algebraic Circuits. Communications of the ACM, 67(2):101–
108, 2024. Preliminary version in the 62nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2021). [Cited on page 1.]

[Mas79] W. J. Masek. Some NP-complete set covering problems. Unpublished Manuscript, 1979.
[Cited on page 16.]

[MR13] Ernst W Mayr and Stephan Ritscher. Dimension-dependent bounds for Gröbner bases
of polynomial ideals. Journal of Symbolic Computation, 49:78–94, 2013. [Cited on

page 3.]

[MS88] B. Monien and I.H. Sudborough. Min cut is NP-complete for edge weighted trees.
Theoretical Computer Science, 58(1):209–229, 1988. [Cited on page 15.]

32

http://dx.doi.org/10.1109/FOCS52979.2021.00050
http://dx.doi.org/10.1137/1.9781611973082.108
http://dx.doi.org/10.1137/1.9781611973082.108
http://eccc.hpi-web.de/report/2015/154/
http://eccc.hpi-web.de/report/2015/154/
http://dx.doi.org/10.4086/toc.2006.v002a010
http://dx.doi.org/10.4086/toc.2006.v002a010
http://dx.doi.org/10.1145/3611094
http://dx.doi.org/10.1145/3611094
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2011.12.018
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2011.12.018
http://dx.doi.org/https://doi.org/10.1016/0304-3975(88)90028-X

[MT98] Christoph Meinel and Thorsten Theobald. Algorithms and Data Structures in VLSI De-
sign: OBDD-foundations and applications. Springer Science & Business Media, 1998.
[Cited on pages 4 and 7.]

[Nis90] Noam Nisan. Psuedorandom Generators for Space-Bounded Computation. In Pro-
ceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990,
Baltimore, Maryland, USA, pages 204–212. ACM, 1990. [Cited on page 6.]

[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the
23rd Annual ACM Symposium on Theory of Computing (STOC 1991), pages 410–418, 1991.
Available on citeseer:10.1.1.17.5067. [Cited on pages 1 and 11.]

[Ore22] Øystein Ore. Über höhere Kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.
[Cited on page 10.]

[Raz06] Ran Raz. Separation of Multilinear Circuit and Formula Size. Theory of Computing,
2(1):121–135, 2006. Preliminary version in the 45th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2004). Pre-print available at eccc:TR04-042. [Cited
on page 1.]

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-
commutative models. Computational Complexity, 14(1):1–19, 2005. Preliminary version
in the 19th Annual IEEE Conference on Computational Complexity (CCC 2004). [Cited on

page 6.]

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identi-
ties. Journal of the ACM, 27(4):701–717, 1980. [Cited on page 10.]

[Shi16] Yaroslav Shitov. How hard is the tensor rank?, 2016. Pre-print available at arXiv:
1611.01559. [Cited on pages 3, 8, and 17.]

[Sie02] Detlef Sieling. The nonapproximability of OBDD minimization. Information and Com-
putation, 172(2):103–138, 2002. [Cited on pages 7 and 25.]

[Weg00] Ingo Wegener. Branching programs and binary decision diagrams: theory and applications.
SIAM, 2000. [Cited on pages 4 and 7.]

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Alge-
braic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic
Computation, volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer,
1979. [Cited on page 10.]

33

http://dx.doi.org/10.1145/100216.100242
http://dx.doi.org/10.1145/103418.103462
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.5067
http://dx.doi.org/10.4086/toc.2006.v002a006
http://eccc.hpi-web.de/report/2004/042/
http://dx.doi.org/10.1007/s00037-005-0188-8
http://dx.doi.org/10.1007/s00037-005-0188-8
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1145/322217.322225
http://arxiv.org/abs/1611.01559
http://arxiv.org/abs/1611.01559
http://arxiv.org/abs/1611.01559
http://dx.doi.org/10.1007/3-540-09519-5_73

A Definitions and Technical Statements

Definition A.1 (Algebraic Circuit). An algebraic circuit is specified by a directed acyclic graph, with
leaves (nodes with in-degree zero, called inputs) labelled by field constants or variables, and internal nodes
labelled by + or ×. The nodes with out-degree zero are called the outputs of the circuit. Computation
proceeds in the natural way, where inductively each + gate computes the sum of its children and each ×
gate computes the product of its children.

The size of the circuit is defined as the number of edges (or wires) in the underlying graph. ♢

34

	Introduction
	Our Results
	Ideas behind our proofs

	Related works
	Preliminaries
	Basics about polynomials and ROABPs
	Generic and random ROABPs
	Useful facts about ROABPs

	Worst case NP-hardness
	 Algebraic MCSP

	Algorithm for order finding
	Complexity in the generic and average case
	The generic case
	Constructing the polynomials
	Finding order of a random ROABP

	Approximate order finding
	Constant-factor Approximation implies a PTAS

	Definitions and Technical Statements

