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Abstract

The dimension of partial derivatives (Nisan and Wigderson, 1997) is a popular measure for
proving lower bounds in algebraic complexity. It is used to give strong lower bounds on the
Waring decomposition of polynomials (called Waring rank). This naturally leads to an interesting
open question: does this measure essentially characterize the Waring rank of any polynomial?

The well-studied model of Read-once Oblivious ABPs (ROABPs for short) lends itself to
an interesting hierarchy of ‘sub-models’: Any-Order-ROABPs (ARO), Commutative ROABPs,
and Diagonal ROABPs. It follows from previous works that for any polynomial, a bound on its
Waring rank implies an analogous bound on its Diagonal ROABP complexity (called the duality
trick), and a bound on its dimension of partial derivatives implies an analogous bound on its
‘ARO complexity’: ROABP complexity in any order (Nisan, 1991). Our work strengthens the
latter connection by showing that a bound on the dimension of partial derivatives in fact im-
plies a bound on the commutative ROABP complexity. Thus, we improve our understanding
of partial derivatives and move a step closer towards answering the above question.

Our proof builds on the work of Ramya and Tengse (2022) to show that the commutative-
ROABP-width of any homogeneous polynomial is at most the dimension of its partial deriva-
tives. The technique itself is a generalization of the proof of the duality trick due to Saxena
(2008).

1 Introduction

How many points do we need to evaluate an expression like the following on, to deterministically
tell if it is computing the zero polynomial?

f (x1, . . . , xn) = (a1,1x1 + a1,2x2 + · · ·+ a1,nxn)
d + · · ·+ (as,1x1 + · · ·+ as,nxn)

d (1.1)
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As of today, the answer to this question stands at (nds)O(log log n), just a (rather annoying)
smidgen away from a legit efficient algorithm. The above bound follows from a combination
of the works of Forbes, Saptharishi and Shpilka [FSS14] and Gurjar, Korwar and Saxena [GKS17].

An expression like (1.1) is called a Waring decomposition for f of size s; the name comes from
‘Waring’s problem’ in number theory1. Analogously, for a homogeneous polynomial f (x) of de-
gree d, its Waring rank is the smallest number s for which f can be written as a sum of d-th pow-
ers of s-many linear forms; that is, the size of its smallest Waring decomposition. The Waring
rank of different polynomials has been studied in mathematics for over a century now (see e.g.
[IK99]), and some recent works have even found its applications in parameterized algorithms
(e.g. [Pra19]). It is known that any polynomial has a finite Waring rank [Fis94, CCG12], except
for over finite fields of small characteristic. We now also know the Waring rank of monomials
exactly [RS11]. For example, it is known that the monomial x1x2 · · · xn has Waring rank exactly
2n−1.

The corresponding algebraic model of computation: called a “depth-3-powering circuit”, was
first introduced in algebraic circuit complexity by Saxena [Sax08], who studied it from the perspec-
tive of polynomial identity testing (PIT for short). PIT is the algorithmic task mentioned above:
determine whether the given circuit computes the identically zero polynomial. In what is some-
times called a “whitebox PIT”, the algorithm has access to the circuit itself; Saxena [Sax08] gave an
efficient whitebox test for a more general model. In a “blackbox PIT”, the algorithm cannot access
the expression and can only query it on a few points (independent of the actual circuit), which is
exactly the question stated at the start.

Dimension of partial derivatives

All the currently known blackbox PITs for depth 3 powering circuits build on the fact that any n-
variate, degree-d polynomial with Waring rank s has at most s(d+ 1) dimension of partial derivatives
(see Definition 1.5). The measure was introduced by Nisan and Wigderson [NW97] as a tool to
prove lower bounds against sums of products of linear forms, and thus the above statement is
implicit from their work. The myriad variants of this measure now form the basis of several
strong lower bounds throughout algebraic circuit complexity (see e.g. [SY10, Sap15]).

Returning to Waring decompositions, almost all known lower bounds on Waring ranks of
different polynomials use the dimension of partial derivatives in one way or the other. In view
of this, and given the strong connections between proofs of hardness and derandomization of PIT
(see e.g. [KS19]), it stands to reason that obtaining an efficient blackbox PIT for depth 3 powering
circuits requires us to answer the following question.

Question 1.2. Is it the case that any n-variate polynomial with dimension of partial derivatives r has a
Waring rank that is at most poly(n, r)?

1See this wikipedia article for a summary.
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To the best of our knowledge, there aren’t even any candidate negative examples to this ques-
tion, except for the symbolic determinant: Detn. The n × n determinant has a dimension of partial
derivatives that is 2Θ(n), but the best known upper bound on its Waring rank stands at 2O(n log n).

The only other “deviation” that these two measures — dimension of partial derivatives and
Waring rank — exhibit, comes from their respective connections with a different well-studied
model, which we will now see.

1.1 Read-once Oblivious ABPs (ROABPs)

An ROABP is an expression of the form: u⊺ · M1(x1) · M2(x2) · · · Mn(xn) · v, where u, v are vectors
over the base field and each Mj(xj) is a univariate polynomial with matrices as coefficients, as
follows.

Mj(xj) = Aj,0 + Aj,1xi + Aj,2x2
i + · · ·+ Aj,dxd

j (1.3)

That is, there is exactly one ‘matrix-polynomial’ corresponding to each variable. Thus, each vari-
able is “read” exactly once, oblivious to the other variables; hence the name. We formally define
ROABPs in Definition 2.1.

Here, the dimension of u, v and all the n(d + 1) many matrices (assumed to be the same with-
out loss of generality) is said to be the width of the ROABP, and is typically denoted by w. Note
that the width of an ROABP is the single parameter that dictates its complexity, since n and d arise
straight from the polynomial being computed. A subtle point here is that for the same polyno-
mial, the smallest possible ROABP-width can vary widely depending on the order in which the
variables appear (see Observation 2.8), and hence the order of an ROABP is also an important
parameter. Nevertheless, for any polynomial and any order, the exact size of the smallest corre-
sponding ROABP can be obtained using a characterization given by Nisan [Nis91]. As we will
soon see, even this characterization is in a way connected to the partial derivatives of the given
polynomial; we provide a formal definition and statement in Definition 2.5 and Theorem 2.6.

ROABPs were formally introduced by Forbes and Shpilka [FS13] as algebraic analogues of
ROBPs from the boolean world, where they showed a quasi-polynomial time blackbox PIT for
ROABPs, inspired by Nisan’s PRG construction against ROBPs [Nis92]. As the name suggests,
ROABPs are a special case of “algebraic branching programs” which are an algebraic analogue
of the (boolean) branching programs. However, we omit those definitions of ABPs and ROABPs,
as seeing them as the matrix-vector product expressions like above would be more useful for the
discussions in this paper. We now introduce the structured variants of ROABPs that are relevant
to this work.
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1.2 Variants of ROABPs

Since the ROABP-complexity of some polynomials depends heavily on the underlying order, we
can further cut out a subclass of polynomials that admit poly(n, d)-sized ROABPs: those that
admit poly(n, d)-sized ROABPs in every order. This class of polynomials is sometimes referred to
as “Any-order ROABPs” (AROs for short)2.

A syntactic way of ensuring that a polynomial computed by an efficient ROABP belongs to
ARO, is to ensure that all the n(d+ 1)-many coefficient matrices (Aj,∗s in (1.3)) commute with each
other under multiplication. This then means that for any j, j′ ∈ [n], we have that Mj(xj)Mj′(xj′) =

Mj′(xj′)Mj(xj), and then the layers of the same ROABP can be shuffled to work for any order.
Such an ROABP with commuting coefficient matrices is called a commutative ROABP (commRO
for short); a formal definition is in Definition 2.2.

Finally, an easy way to pick coefficient matrices that commute with each other is to choose
all of them as diagonal matrices. Such an ROABP is called a diagonal ROABP (diagRO for short),
defined in Definition 2.3.

The above variants of ROABPs appear implicitly in some previous works on ROABPs, but
they were explicitly defined and proposed as objects of study in a recent work of Ramya and
Tengse [RT22]. As mentioned earlier, our proof technique also borrows from the algebraic ma-
chinery that appears in their work.

We now proceed to look at the connections between Waring rank, dimension of partial deriva-
tives and these structured ROABPs, before stating our main result.

1.3 Waring rank, partial derivatives and ROABPs

The aforementioned whitebox PIT for depth 3 powering circuits due to Saxena [Sax08] has the
following result at its core.

Theorem 1.4 (Duality trick [Sax08, Lemma 1] (Informal)). For any linear form ℓ(x) = a1x1 + a2x2 +

· · ·+ anxn, and any d, the polynomial ℓ(x)d can be expressed as:

ℓ(x)d =
t

∑
i=1

βi · gi,1(x1) · gi,2(x2) · · · gi,n(xn),

for constants β1, . . . , βt and degree-d univariates g1,1, . . . , gt,n, with t ≤ nd + 1.

Note that this gives an ROABP of width t = O(nd) for the d-th power of any n-variate linear
form, by using the gi,js appropriately to obtain each of the matrix polynomials Mj(xj) and using
βis in the vector u (or v). In fact, the “coefficient matrices” (the Aj,∗s from (1.3)) of this ROABP are

2Contrary to what the name suggests, this is not a special type of ROABPs, it is a class of polynomials.
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just diagonal matrices. Consequently, an n-variate, degree-d polynomial with Waring rank r has a
diagRO of width O(ndr).

The duality trick actually provides diagROs for a more general model called “depth 4 diagonal
circuits”, and the corresponding whitebox PIT also holds for this more general model. In fact, this
relation between powering circuits and diagROs is a crucial component of the current state-of-the-
art blackbox PIT for depth 3 powering circuits [FSS14, GKS17] mentioned earlier.

Given that polynomials with small Waring rank have small diagROs, it is natural to ask what
happens to polynomials with small dimension of partial derivatives.

ROABPs and partial derivatives. Suppose we are given an n-variate, degree-d polynomial f (x),
whose dimension of partial derivatives is at most r. It turns out, via Nisan’s characterization, that
such a polynomial has an ROABP of width at most r in every order (see Observation 2.7). That is,
for any σ ∈ sn, we are guaranteed some ROABP, say Rσ(x), that computes f in that order. However,
it is not clear from this non-constructive upper bound whether the ROABPs Rσ across different σs
are related in any way. This brings us to our main result.

1.4 Our contribution

We first formally define the measure: dimension of partial derivatives.

Definition 1.5 (Dimension of partial derivatives). For a polynomial f (x1, . . . , xn), the dimension of its
partial derivatives is defined as follows.

dim ∂<∞ ( f ) := dim
(
spanC {∂e f : e ∈ Nn}

)
Here ∂e f denotes the partial derivative of f with respect to the monomial xe = xe1

1 xe2
2 · · · xen

n . ♢

For a polynomial f , let commRO ( f ) denote the width of the smallest commRO that computes
it; our main result is as follows.

Theorem 1.6. For any homogeneous polynomial f (x) ∈ C[x], commRO ( f ) ≤ dim ∂<∞ ( f ).

Since the dimension of partial derivatives of any homogeneous component of f is at most
deg( f ) times that of f (see Lemma 2.4), we get the following result in the general case.

Corollary 1.7. For any f (x) ∈ C[x] of degree d, commRO ( f ) ≤ (d + 1)2 · dim ∂<∞ ( f ).

Set multilinear upper bounds In fact, our method for constructing commutative ROABPs using
dim ∂<∞ ( f ) also lets us obtain what we call “commutative set-multilinear ABPs” for f with a
minor tweak in our proof. Informally, a degree-d polynomial f (x) is called set-multilinear under a
partition x = x1 ⊔ x2 ⊔ · · · ⊔ xd, if each of its monomials contains exactly one variable from each of
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the xis. A(n ordered) set-multilinear ABP is then a product of matrices with linear polynomials as
entries, with the variables in those polynomials obeying the partition (see definitions 4.2 and 4.3).

Theorem 1.8. For any set-multilinear polynomial f (x) ∈ C[x], the commutative-set-multilinear-ABP-
width( f ) ≤ dim ∂<∞ ( f ).

Explicitness. We note that our proof provides an explicit construction of a commRO for any
polynomial f , given the dependencies between the partial derivatives of f . In fact, as mentioned
earlier, this construction itself is a generalization of the proof of the duality trick from Saxena’s
work [Sax08] (see Remark 3.7). We describe a width-2O(n) commRO, and a commutative set-
multilinear ABP for the n × n determinant to illustrate this point in Section 4.

2 Preliminaries

Throughout the paper, we work with the field of complex numbers, but most of our proofs extend
to fields whose characteristic is zero or large enough.

Notation

• For a vector e ∈ Nn, we write te for the monomial te1
1 te2

2 · · · ten
n , where t is a set of variables.

We also use e! to refer to the product of factorials e1!e2! · en!.

• For a monomial m, we write ∂m f for the partial derivative ∂|e| f
∂te . When m = te, we shorten it

further to ∂e f .

2.1 Formal definitions

Definition 2.1 (Read-once Oblivious ABP (ROABP)). For any n, d, w ∈ N, and an n-variate polyno-
mial f (x) of individual degree d, we say that it has a width w ROABP, if there exists a permutation σ ∈ sn

for which there exist matrices
{

Aj,k
}

in Cw×w for all j ∈ [n] and 0 ≤ k ≤ d, and vectors u, v ∈ Cw, such
that the following holds.

f (x) = u⊺ · Mσ(1)(xσ(1)) · Mσ(2)(xσ(2)) · · · Mσ(n)(xσ(n)) · v,

where for all j ∈ [n],

Mj(xj) = Aj,0 + Aj,1xj + Aj,2x2
j + · · ·+ Aj,dxd

j .

We call the matrices
{

Aj,k
}

the coefficient matrices of the ROABP. ♢

Definition 2.2 (Commutative ROABP (commRO)). An ROABP is said to be a commutative ROABP,
if all its coefficient matrices commute with each other pairwise.
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For a polynomial f , we use commRO ( f ) to denote the smallest width w such that there is width-w
commRO computing f . ♢

Definition 2.3 (Diagonal ROABP (diagRO)). An ROABP is said to be a diagonal ROABP, if all its
coefficient matrices are diagonal matrices.

For a polynomial f , we use diagRO ( f ) to refer to the smallest width w such that there is width-w
diagRO computing f . ♢

Partial Derivatives and the Nisan matrix

Lemma 2.4. Let f (x) be a polynomial of degree d and let h(x) be some homogeneous component of f . Then
dim ∂<∞ (h) ≤ (d + 1) · dim ∂<∞ ( f ).

Proof. Note that for any nonzero scalar α, the polynomial fα(x) := f (αx1, αx2, . . . , αxn) satisfies
dim ∂<∞ ( fα) = dim ∂<∞ ( f ), since it is an invertible operation. Next, for distinct α0, α1, . . . , αd ∈ C,
we can use interpolation to write h as a linear combination of fα0 , fα1 , . . . , fαd . Thus, dim ∂<∞ (h) ≤
∑0≤i≤d dim ∂<∞ ( fαi) ≤ (d + 1) · dim ∂<∞ ( f ).

Definition 2.5 (Nisan Matrix [Nis91]). For an n-variate polynomial f (x) of individual degree d, and
a partition S ⊔ T = [n], the (S, T)-Nisan matrix for f , M f

(S,T), is a (d + 1)|S| × (d + 1)|T| matrix as
follows.

• The rows are indexed by all the individual degree d monomials over {xi | i ∈ S},

• The columns are indexed by all the individual degree d monomials over
{

xj | j ∈ T
}

,

• The entry M f
(S,T)[m, m′] is the coefficient of the monomial m · m′ in f .

♢

Theorem 2.6 (Nisan’s characterization [Nis91]). For any n-variate polynomial f (x), and any order
σ ∈ sn on the variables, define Si = {σ(1), . . . , σ(i)} and Ti = {σ(i + 1), . . . , σ(n)} for each i ∈ [n].
Then the size of the smallest ROABP for f in the order σ is exactly ∑i∈[n] rank(M f

(Si ,Ti)
). Further, the

width of the ROABP is exactly maxi∈[n] rank(M f
(Si ,Ti)

).

It is not difficult to see that for any polynomial, the Nisan matrix for any partition is a scaling
of a sub-matrix of a matrix whose rows are all the partial derivatives of that polynomial. This
then leads to the following observation, which is a weaker and non-constructive version of Theo-
rem 1.6.

Observation 2.7. Let n, d ∈ N be arbitrary and F be any field of characteristic 0 or greater than d. Then for
any n-variate f (x) of individual degree d, and any partition S ⊔ T = [n], rank(M f

(S,T)) ≤ dim ∂<∞ ( f ).
Thus, any polynomial f has an ROABP in every order of width at most dim ∂<∞ ( f ).

Observation 2.8. The polynomial (x1 + y1)(x2 + y2) · · · (xn + yn) has width-2 ROABPs in the order
(x1, y1, . . . , xn, yn), but requires width 2n in the order (x1, . . . , xn, y1, . . . , yn).
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2.2 Concepts from algebra

We will need a few concepts from elementary algebraic geometry; the reader may refer to any
standard texts for more details on these concepts (e.g. [CLO07, IK99]).

Definition 2.9 (Ideal). For a set of polynomials { f1, . . . , fs} ⊂ C[x], the ideal generated by them is the
smallest set of polynomials I that satisfies the following.

• ∀g ∈ C[x] and ∀ f ∈ I, f g ∈ I.

• ∀ f , f ′ ∈ I, we have f + f ′ ∈ I.

The ideal is denoted by ⟨{ f1, . . . , fs}⟩. ♢

Definition 2.10 (Variety of an ideal). For an ideal I ⊂ C[x], the variety of I, written as V(I), is the
largest set of points V ⊂ C|x| such that ∀ f ∈ I and ∀a ∈ V, f (a) = 0. ♢

Derivative operators

Definition 2.11 (Derivative Operator). A derivative operator is a linear combination of finitely many
partial derivatives of the form D = ∑r

i=1 αi∂mi . It acts on polynomials naturally: D f = ∑r
i=1 αi∂mi f .

Clearly, for any polynomial g = ∑m gmm, we can define a derivative operator Dg = ∑m gm∂m, and
vice versa. Therefore, we always refer to a derivative operator as Dg with an implicit polynomial g. ♢

Definition 2.12 (Closed space of derivative operators). A vector space of operators ∆ is said to be closed
if for every Dg ∈ ∆, and any monomial m such that g′ := ∂mg ̸≡ 0, the corresponding operator Dg′ is also
in ∆. ♢

Observation 2.13. For any f (t), g(t) ∈ C[t], we have the following.

(
D f g

)
(0) = ∑

e
coeff f (te) · e! · coeffg(te) =

(
Dg f

)
(0)

Primary ideals and derivative operators The following result follows from the joint works of
Möller, Marinari and Mora [MMM93], and Möller and Stetter [MS95]. A proof, with a statement
as follows, can be found in [RT22].

Theorem 2.14 ([MMM93, MS95]). Let J ⊆ C[t] be an ideal with the variety V(J) = {0}, and sup-
pose that the quotient ring RJ := C[t]/J is a w-dimensional vector space over C. Then, there exists a
w-dimensional C-vector space of derivative of operators ∆(J) that characterizes the quotient ring RJ .

That is, for any basis {D1, . . . , Dw} of ∆(J), there is an invertible matrix M ∈ Cw×w such that for
any polynomial g(t) ∈ C[t],

[D1(g)(0) D2(g)(0) · · · Dw(g)(0)]⊺ = M · coeff([g]),

where coeff([g]) is the coefficient vector of [g] := (g mod J).
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The above correspondence works for any point a ∈ Cn in the variety; we will work with 0 to
keep the exposition simple, since that is the only case relevant for our application.

Definition 2.15 (Operator space of an ideal). For an ideal J ⊆ C[t] with V(J) = {0}, we define the
corresponding space of derivative operators ∆(J) as follows.

∆(J) :=
{

Dg ∈ C[∂t] : ∀h ∈ J, (Dgh)(0) = 0
}

♢

Definition 2.16 (Ideal of an operator space). Let ∆ be a closed space of derivative operators. We define
the corresponding annihilating ideal (at the point 0), denoted by I0(∆) as follows.

I0(∆) := {h ∈ C[t] : ∀D ∈ ∆, (Dh)(0) = 0} ♢

2.3 Multiplication tables: from ideals to matrices

Univariate ideals

Let J = ⟨p(t)⟩ ⊆ C[t] be an ideal, and consider the quotient ring R := C[t]/J. If p(t) has degree d,
then the multiplication table for t in the ring R, is a d × d matrix whose minimal polynomial is p(t).
Such a matrix, say A, can easily be defined by setting Ai,j = coefftj(

[
t · ti]), for all 0 ≤ i, j ≤ (d− 1).

Here, [t · ti] is (ti+1 mod J).
For instance, when p(t) = t5 − 10t4 − 7t3 + 2t2 − 3, the multiplication table would be the

following 5 × 5 matrix; it can be checked that p(t) is indeed the minimal polynomial of A.

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
3 0 −2 7 10


Further, A satisfies that g(A)i,j is exactly coefftj(

[
g(t) · ti]), for any g(t) ∈ C[t]. In particular,

this means that the first row of g(A) is precisely the coefficient vector of [g(t)].

Multivariate ideals

One key change when we move to the multivariate setting, is that there is no inherent ordering on
the monomials; so we have to choose one. A monomial ordering is any ‘total order’ on monomials,
which respects divisions and has 1 as the least monomial. We will work with the degree-wise
lexicographical ordering (“deg-lex”) with respect to t1 ≺ t2 ≺ · · · ≺ tr. We use this mono-
mial ordering to uniquely identify the leading (“greatest”) and trailing (“least”) monomials in any
polynomial in C[t1, . . . , tr].
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This then allows us to identify a set of leading monomials of the ideal, and then define what is
called a normal set and the quotient ring corresponding to the ideal, as follows.

Definition 2.17 (Leading monomials and normal set). Given an ideal I ⊂ C[x], and a monomial
ordering, the set of its leading monomials is defined as LM(I) := {LM( f ) | f ∈ I}.

The complement of LM(I) is called the normal set of I, denoted by N(I). ♢

Definition 2.18 (Quotient ring). For any ideal I ⊂ C[x], and any polynomial g ∈ C[x], we can define
g mod I to be the polynomial g0 all of whose monomials are from N(I) and which satisfies g − g0 ∈ I. We
denote the polynomial g mod I by [g] when the ideal is clear from the context.

We can thus define the quotient ring corresponding to I denoted by C[x]/I, by reducing each polynomial
in C[x] modulo I. ♢

Intuitively, the quotient ring C[t]/J is obtained by “setting all polynomials in J to zero”. Then
any monomial from LM(J) can be written in terms of those in the normal set, and the polynomials
in the quotient ring are supported entirely on the monomials from N(J).

Let the normal set of J ∈ C[t1, . . . , tr] be {m1, . . . , mw}, where 1 = m1 ≺ m2 ≺ · · · ≺ mw. The
multiplication tables A1, A2, . . . , Ar for J are then the w × w matrices that satisfy the following, for
every ℓ ∈ [r], and all i, j ∈ [w].

Aℓ(i, j) = coeffmj([tℓ · mi])

Just as before, for any polynomial g(t), we have that g(A1, . . . , Ar)(i, j) = coeffmj([g · mi]). Thus,
the first row of any matrix of the form g(A1, . . . , Ar) is just the coefficient vector of g(t) mod J, for
any polynomial g.

3 Constructing commutative ROABPs from apolarities

3.1 Apolar ideal of a polynomial

Definition 3.1 (Apolar Ideal). Let f (t1, . . . , tn) be a homogeneous polynomial of degree d. The apolar
ideal of f is defined as follows.

f⊥ := ⟨{h(t) ∈ C[t] : Dh f ≡ 0}⟩ ♢

Observation 3.2. For any polynomial f (t), the variety of its apolar ideal, V( f⊥), is a single point 0.

Proof. For each i ∈ [n], td+1
i ∈ f⊥ where d = deg( f ); so the variety is contained in {0}. Also, when

f ̸≡ 0, any polynomial in f⊥ has a zero constant term because a nonzero polynomial cannot be
linearly dependent on its derivatives. Hence, V( f⊥) = {0}.

Note that the apolar ideal is a polynomial ideal, but is defined using derivative operators. The
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apolar ideal of f is related to its partial derivatives in the following way.

Lemma 3.3 (Apolar ideal and partial derivatives). Let f (t) be a homogeneous polynomial with the set
{g1, g2, . . . , gw} being a basis for its space of partial derivatives of all degrees. For the corresponding closed
space of derivative operators ∆ f := spanC

{
Dg1 , Dg2 , . . . , Dgw

}
, and its annihilating ideal J := I0(∆ f ),

we have that J = f⊥ and equivalently, ∆ f = ∆( f⊥).

Proof. We can assume that f = g1 without loss of any generality.

f⊥ ⊆ J. Let h ∈ f⊥, and say g = ∂m f is some arbitrary partial derivative of f , so Dg ∈ ∆ f .
Now

(
Dgh

)
(0) = ∑e coeffh(te) · e! · coeffg(te) = (Dhg) (0), from Observation 2.13. Further,

Dhg = Dh∂m f = D(h·m) f , and since m · h ∈ f⊥, Dgh = D(h·m) f = 0. Since our choice of g and
h was arbitrary, this is true for each g ∈ ∆ f , and each h ∈ J, showing that f⊥ ⊆ J.

J ⊆ f⊥. Let h ∈ J be arbitrary, and consider Dh f = ∑e ∑e′ coeffh(te) · coeff f (te′) · ∂e(te′).

Dh f = ∑
e

∑
e′≥e

coeffh(te) · coeff f (te′) · ∂e(te′)

= ∑
e

∑
e′≥e

coeffh(te) · coeff f (te′) · e′!
(e′ − e)!

· (te′−e)

= ∑
e0 :=e′−e

[
∑
e

coeffh(te) · (e + e0)! · coeff f (te+e0) ·
(

te0

e0!

)]

Now let g0 := ∂e0( f ), and note that coeffg0(t
e) = (e0+e)!

e! · coeff f (te0+e). Therefore, we can
further simplify our expression for Dh f as follows.

Dh f = ∑
e0

te0

e0!
·
(

∑
e

coeffh(te) · e! · coeffg0(t
e)

)

= ∑
e0

te0

e0!
·
(

Dg0 h
)
(0) (Using Observation 2.13)

= ∑
e0

0 · te0

e0!
≡ 0 (Dg0 ∈ ∆ f and h ∈ J)

Thus, h ∈ f⊥.

3.2 Proof of Theorem 1.6

We are now ready state the general recipe for constructing a commutative ROABP for any homo-
geneous f (x1, . . . , xn). We start by defining the following polynomial over x, and an auxiliary set
of variables t = {t1, . . . , tn}, which is the product of the degree-d-truncations of the Taylor series
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of etixi s.

G(x, t) :=
n

∏
i=1

(
1 + tixi +

1
2!

t2
i x2

i + · · ·+ 1
(d − 1)!

td−1
i xd−1

i +
1
d!

td
i xd

i

)
(3.4)

Observation 3.5. Let D := f (∂t1, ∂t2, . . . , ∂tn). Then (D ◦ G) = f (x).

Lemma 3.6. Suppose f (x) is a homogeneous polynomial with dimension of partial derivatives exactly w.
Then, there exists a vector v ∈ Cw, such that for the multiplication tables A1, . . . , An of the apolar ideal
f⊥, we have that

∑
j∈[w]

vj · G(A1, . . . , An, x1, . . . , xn)[1, j] = f (x).

Proof. Since A1, . . . , An are multiplication tables of f⊥, we get that the first row of G(A, x) is exactly
the coefficient vector of (G(t, x) mod f⊥(t)) which is an object in C[t][x]/f⊥(t) = (C[t]/f⊥)[x].

Next, suppose that {g1(t), . . . , gw(t)} is a basis for the partial derivatives of f (t). Then by
Lemma 3.3, we know that ∆( f⊥) has a basis given by the operators

{
Dg1 , . . . , Dgw

}
. Also, the

variety of f⊥ is exactly the singleton set {0}. Thus, by Theorem 2.14, the coefficients of [G(t, x)] :=
G(t, x) mod f⊥(t) are spanned by Dg1(G)(0), Dg2(G)(0), . . . , Dgw(G)(0). More importantly, the set
of Dgi(G)’s is spanned by the coefficients of [G(t, x)], and further, Dg1(G) = D f (G) = f (x).

Thus, the vector v can be obtained from the matrix M guaranteed by Theorem 2.14, as claimed.

This proves the main theorem, restated below.

Theorem 1.6. For any homogeneous polynomial f (x) ∈ C[x], commRO ( f ) ≤ dim ∂<∞ ( f ).

Remark 3.7. Note that Saxena’s proof of the duality trick [Sax08, Lemma 1] can be seen as starting with
the same “template polynomial” as (3.4), homogenizing it through interpolation, and then just evaluating
it on the “points” given by the Waring decomposition for f . Since it is known by the Apolarity lemma
(see e.g. [IK99]) that the points given by a Waring decomposition of f define a radical ideal J that sits inside
f⊥, the action of evaluating on those points can be viewed as going modulo J.

In that sense, our proof generalizes this method by directly going modulo f⊥. As this uses a less strict
property of f , the resulting expression is less simple, and is therefore a commRO instead of a diagRO. ♢

4 The Determinant

In this section, we will use the proof of Theorem 1.6 to construct explicit commutative ROABPs.
In particular, we will construct a commutative ROABP for the determinant (Detn) of width 2Θ(n).

The choice of this example is deliberate, as the determinant is the only candidate where there
is an asymptotic gap between Waring rank upper bounds and partial derivative dimension.

12



The determinant of n-dimensional symbolic matrix has partial derivative dimension exactly
(2n

n ) = 2Θ(n). But, the best upper bound for the Waring rank of the determinant is 2O(n log n). In
fact, there are reasons to believe that the Waring rank of the determinant is 2ω(n). This is due to
the fact that the set-multilinear depth-3 complexity or Tensor rank of Detn, and (to the best of our
knowledge) even the best constant-depth multilinear formula that we know of for the determi-
nant, is 2O(n log n). See [KM18, Raz10] for details on tensor rank and syntactic multilinear formulas
of the determinant.

For Detn, Theorem 1.6 directly gives a commutative ROABP of width 2Θ(n). We show the
explicit calculations behind this commutative ROABP below. Let’s recall what our overall step-
by-step process will be for any polynomial f ∈ C[x]:

1. Compute the closed derivative space ∆ = ∂<∞ f , the apolar ideal corresponding to it I0(∆) =
f⊥ and the normal set of N( f⊥). Let, m :=

∣∣N( f⊥)
∣∣ = |∆|.

2. Compute the multiplication tables (Mi) corresponding to each of the variables.

3. The final commutative ROABP of f ≡ a⊺ · ∏i∈[n](1 + xi Mi) · b for a, b ∈ Cm.

4.1 Derivative Space, Apolar Ideal, and its Normal Set

In this subsection, we will state and discuss some facts about the derivative space, apolar ideal,
and the normal set of the apolar ideal of the determinant. We will use X to denote the n × n
symbolic matrix, that is, X = (xi,j)i,j∈[n]. Similarly, let U = (ti,j)i,j∈[n] be a symbolic matrix in t-
variables. Let S, T be arbitrary subsets of [n]. We will denote the minor (of X) picked by selecting
rows from S and columns from T by XS,T.

We will start with the well-known fact that the derivative space of determinant is just the
determinant of its minors. Formally, the following set is a basis of ∂<∞ Detn(X),

{Det(XS,T) : for S, T ⊆ [n] such that |S| = |T|} .

The apolar ideal of the determinant is generated by permanents of 2 × 2 minors and certain
unacceptable degree two monomials, as stated formally below.

Theorem 4.1 (e.g. [Sha15, Theorem 2.12]). Det⊥n (X) = ⟨PX,UX⟩, where PX is the collection of perma-
nents of all 2 × 2 minors of X, and UX denotes all quadratic unacceptable monomials, that is, monomials
that don’t divide any monomial in the support of Detn(X).

Now, for the normal set computation, we will focus on the degree-wise lexicographical order-
ing of monomials (“deg-lex”); the ordering on variables is in the “row-major” form:

x1,1 ≻ x1,2 ≻ . . . ≻ x1,n ≻ x2,1 ≻ . . . ≻ xn,n.
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The trailing monomial of Det(XS,T) in this ordering is just the product of the anti-diagonal entries
of XS,T. To see this, note that the only variable you can pick from the first row is the last element.
Now that we have picked something from the last column and the first row, we can strip them off
as none of the variables can contribute anymore. Now focus on the resulting minor (after strip-
ping) and proceed by induction. Let’s denote this trailing monomial by τS,T := anti-diag(XS,T).

We now claim that the normal set of J is just a collection of these anti-diagonal monomials
corresponding to all minors, as follows.

N(J) = {anti-diag(XS,T) : for S, T ⊆ [n] such that |S| = |T|}

To see this, observe that any non-anti-diagonal monomial (for any minor) will be a multiple of the
leading term of a 2 × 2 minor’s permanent and thus will be in LM(Det⊥). At the same time, the
anti-diagonal monomial will never be a multiple of such terms, so it is never in LM(Det⊥). Note
that here, |∆| = |N(J)| = (2n

n ).

4.2 Multiplication tables for the apolar ideal

Let Ai,j be the matrix corresponding to ti,j with dimension |N(J)| × |N(J)|. For any row of Ai,j,
indexed by (S, T) such that |S| = |T|, we have that

row(S, T)(Ai,j) =

0 if i ∈ S or j ∈ T

sgn(τS′,T′) · sgn(τS,T · xi,j) · τ(S∪{i},T∪{j}) if i /∈ S, j /∈ T
.

Here, sgn of any monomial denotes the sgn of its corresponding permutation (obtained by viewing
S, T ≡ {1, . . . , |S|}). To see this, note that by definition row(S, T)(Ai,j) is just the coefficient vector
of (ti,j · τS,T mod J).

Thus, as discussed (in proof of Theorem 1.6) we get

Detn(X) = a⊺ · ∏
i,j∈[n]

(I + Ai,jxi,j) · b for a, b ∈ C(2n
n ).

Below, we give an explicit description of the commutative ROABP for Det2. Here, the normal
set is N(Det⊥2 ) = {1, x1,1, x1,2, x2,1, x2,2, x1,2x2,1}. Running our analysis to compute the multiplica-
tion tables followed by then replacing it in the template polynomial yields that the Det2(X) is the
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(1, n)-th entry of the product of the following four matrices (in any order).

M1,1 =



1 x1,1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 −x1,1

0 0 0 0 0 1


, M1,2 =



1 0 x1,2 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 x1,2

0 0 0 0 1 0
0 0 0 0 0 1


,

M2,1 =



1 0 0 x2,1 0 0
0 1 0 0 0 0
0 0 1 0 0 x2,1

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, M2,2 =



1 0 0 0 x2,2 0
0 1 0 0 0 −x2,2

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

4.3 Commutative Set-multilinear ABP

The commutative matrices Ai,j generated in the previous subsections using multiplication tables
from Det⊥n can in fact be used to design a commutative set-multilinear ABP for Det as well.

The benefit of studying this model stems from the fact that if we could somehow “diagonalize”
these commutative matrices, then that would indeed give a set-multilinear depth-3 representation
of the determinant of size 2O(n). That, in turn, would yield that the Waring rank of the determi-
nant is also 2O(n). By “diagonalizable,” we simply mean if the above matrices can be replaced by
diagonal matrices with at most a polynomial blow-up in the dimension.

In fact, the commutative matrices constructed for Detn are provably not diagonalizable by
invertible transformations. But for Permn, the matrices that we will get by running our entire
analysis are indeed “diagonalizable”! In the sense that we can replace them by diagonal matrices
of similar dimension to compute Permn.

Let ⊔j∈[d]xj be a partition of the set x of input variables. Then a polynomial is set-multilinear
under partition ⊔j∈[d]xj if each monomial of the polynomial picks up exactly one variable from
each part in the partition. Note that, Det is set-multilinear w.r.t. the variable partition being the
row variables (or column variables).

Definition 4.2 (Set-multilinear ABP (smABP)). Let n, d, w ∈ N, and let f (x) be an n-variate set-
multilinear polynomial under the partition x1 ⊔ x2 ⊔ · · · ⊔ xd. We say that f has a width w set-multilinear
ABP3, if there exists a permutation σ ∈ sd for which there exist matrices

{
Aj,k
}

in Cw×w for all j ∈ [d]

3Strictly speaking this defines ordered set-multilinear algebraic branching programs, but we drop this detail for
brevity.
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and 1 ≤ k ≤
∣∣xj
∣∣, and vectors u, v ∈ Cw, such that the following holds.

f (x) = u⊺ · Mσ(1)(xσ(1)) · Mσ(2)(xσ(2)) · · · Mσ(d)(xσ(d)) · v,

where for all j ∈ [d],

Mj(xj) = Aj,1xj,1 + Aj,2xj,2 + · · ·+ Aj,|xj|xj,|xj|.

We call the matrices
{

Aj,k
}

the coefficient matrices of the smABP. ♢

Definition 4.3 (Commutative smABP). An smABP is said to be a commutative smABP if all its coef-
ficient matrices pairwise commute with each other. ♢

Now, we will show that by simply changing the template polynomial (from (3.4)) appropri-
ately, we can get a commutative set-multilinear ABP representation for Detn.

Define, G(x, t) :=
n

∏
i=1

 ∑
j∈[n]

ti,jxi,j

 . (4.4)

Again, just like Observation 3.5, we have that Detn(∂t1,1 , ∂t1,2 , . . . , ∂tn,n) ◦ G = Detn(X). And this
gives that,

Detn(X) = a⊺ ·
n

∏
i=1

 ∑
j∈[n]

Ai,jxi,j

 · b for some a, b ∈ C(2n
n ).

We remark that the above analysis works for any set-multilinear polynomial, along the same
lines as the proof of Theorem 1.6. This directly gives us the following theorem.

Theorem 1.8. For any set-multilinear polynomial f (x) ∈ C[x], the commutative-set-multilinear-ABP-
width( f ) ≤ dim ∂<∞ ( f ).

5 Discussion

In summary, we utilize the knowledge of commuting matrices outlined in [RT22] to provide a
generic recipe for explicit constructions of commutative branching programs. For the specific
setting of ROABPs, this improves upon the earlier known connection (Observation 2.7) and takes
us a step closer towards answering Question 1.2. An immediate direction for further study is the
following.

Can we show any bounds on the commRO width of a polynomial in terms of its diagRO
width? In addition to shedding further light on Question 1.2, such a result should also provide
us with a new hardness measure for structured ROABPs and possibly even depth 3 powering
circuits, particularly if the bound is a super-linear lower bound on diagRO width. As alluded to
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in the introduction, perhaps a new hardness measure against diagRO or depth 3 powering circuits
is what is required to fully derandomize blackbox PIT for the model. A concrete way in which this
is true is that a polynomial time blackbox PIT for width-w, degree-d, O(log dw)-variate diagRO
would give a polynomial time blackbox PIT for depth 3 powering circuits [BS21, Lemma 2.12].
This gives the lower bound question a much larger and more interesting context.
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