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Abstract

The framework of algebraically natural proofs was independently introduced in the works
of Forbes, Shpilka and Volk (2018), and Grochow, Kumar, Saks and Saraf (2017), to study the
efficacy of commonly used techniques for proving lower bounds in algebraic complexity. We
use the known connections between algebraic hardness and pseudorandomness to shed some
more light on the question relating to this framework, as follows.

• The subclass of VP that contains polynomial families with bounded coefficients, has effi-
cient equations. Over finite fields, this result holds without any restriction on coefficients.
Further, both these results also extend to the class VNP as is.

• Over fields of characteristic zero, VNP does not have any efficient equations, if the Perma-
nent is exponentially hard for algebraic circuits.
This gives the only known barrier to “natural” lower bound techniques (that follows from
believable hardness assumptions), and also shows that the restriction on coefficients in
the first category of results about VNP is necessary.

The first set of results follows essentially by algebraizing the well-known method of gen-
erating hardness from non-trivial hitting sets (e.g. Heintz and Schnorr 1980). The conditional
hardness of equations for VNP uses the fact that pseudorandomness against a class can be ex-
tracted from a polynomial that is (sufficiently) hard for that class (Kabanets and Impagliazzo,
2004).
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1 Introduction

The quest for proving strong lower bounds for algebraic circuits is one of the fundamental chal-
lenges in algebraic complexity, and maybe the most well-studied one. Yet, progress on this prob-
lem has been painfully slow and sporadic. Perhaps the only thing more frustrating than the inabil-
ity to prove such lower bounds is the difficulty in coming up with plausible approaches towards
them. This lack of progress has spurred an interest towards understanding the viability of some
commonly used lower bound approaches; the idea being that a good sense of what approaches
will not work would aid in the search of those that might work. Moreover, such meta-studies could
help identify the strengths of the current and future approaches that show promise.

In the broader context of lower bounds in computational complexity, there are various results
of this flavor which establish that various families of techniques cannot be used for proving very
strong lower bounds. For instance, the barrier of Relativization due to Baker, Gill and Solovay
[BGS75], that of Algebraization due to Aaronson and Wigderson [AW09] and that of Natural Proofs
due to Razborov and Rudich [RR97].1 While none of these barrier results are directly applicable to
the setting of algebraic computation, there have been recent attempts towards generalizing these
ideas to the algebraic set up. A key notion in this line of work is the notion of algebraically natural
proofs alluded to and defined in the works of Aaronson and Drucker [AD08], Forbes, Shpilka and
Volk [FSV18], and Grochow, Kumar, Saks and Saraf [GKSS17].

We now discuss this notion, starting with a discussion on Natural Proofs which motivated the
definition.

1.1 The Natural Proofs framework of Razborov and Rudich

Razborov and Rudich [RR97] noticed that underlying many of the lower bound proofs known
in Boolean circuit complexity, there was some common structure. They formalized this common
structure via the notion of a Natural Property, which we now define.

Definition 1.1. A subset P ⊆ { f : {0, 1}n → {0, 1}} of Boolean functions is said to be a natural property
useful against a class C of Boolean circuits if the following are true.

• Usefulness. Any Boolean function f : {0, 1}n → {0, 1} that can be computed by a Boolean circuit
in C does not have the property P .

• Constructibility. Given the truth table of a Boolean function f : {0, 1}n → {0, 1}, whether it has
the property P can be decided in time polynomial in the length of the input, i.e. in time 2O(n).

• Largeness. For all large enough n, at least a 2−O(n) fraction of all n variate Boolean functions have
the property P . ♢

A proof that a certain family of Boolean functions cannot be computed by circuits in C is
said to be a natural lower bound proof if it (perhaps implicitly) proceeds via establishing a natu-

1Sometimes, these results are conditional, as in [RR97].
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ral property useful against C , and showing that the candidate hard function has this property.
Razborov and Rudich then showed that most of the Boolean circuit lower bound proofs that we
know (for example, lower bounds for AC0 circuits [FSS84, Hås86] or lower bounds for AC0[⊕] cir-
cuits [Raz87, Smo87]) fit into this framework, maybe with some work, and hence are natural in this
sense. Further they argue that, under standard cryptographic assumptions, the proof of a lower
bound against any sufficiently rich circuit class (such as the class P/ poly) cannot be natural! Thus,
under standard cryptographic assumptions, most of the current lower bound techniques are not
strong enough to show super-polynomial lower bounds for general Boolean circuits.

We now move on to discuss a relatively recent analogue of the notion of Natural Proofs, for-
malized in the context of algebraic computation.

1.2 Algebraically Natural Proofs

Algebraic complexity is the study of computational questions about polynomials as formal objects.
The basic model of computation here, an algebraic circuit, is an algebraic analogue of a boolean
circuit with the gates of the circuit being labeled by + (sum) and × (product) gates as opposed to
Boolean functions; the size of a circuit is the number of wires (edges) in it.2 The algebraic analogue
of P/ poly is the class VP of polynomial families { fn}, where fn is an n variate polynomial of
degree and algebraic circuit size poly(n). A fundamental question in this setting is to come up
with explicit families of polynomials, those in the class VNP (the algebraic analog of NP/ poly),
which are not in VP. While the state of the art of size lower bounds for algebraic circuits is a bit
better than that for Boolean circuits, with slightly super linear lower bounds having been shown
by Strassen [Str73] and Baur & Strassen [BS83], this lower bound has seen no improvements for
nearly four decades. The recent breakthrough by Limaye, Srinivasan and Tavenas [LST21] does
indeed suggest that stronger lower bounds might be within reach in the near future, but it is far
from clear how that could be done. This absence of progress has led to some research towards
understanding the limitations of the current proof techniques in proving strong lower bounds for
algebraic circuits.

Considering that algebraic circuits seem like a fairly general and powerful model of compu-
tation, it is tempting to think that the natural proofs barrier of Razborov and Rudich [RR97] also
extends to this setting. However, this problem turns out to be a non-trivial one, and indeed, it is
not known whether their results extend to algebraic circuits. This question is closely related to the
existence of cryptographically secure, algebraic pseudorandom functions that can be computed by
small and low degree3 algebraic circuits, and there does not seem to be substantial evidence one
way or the other on this. We refer the reader to [AD08] and [FSV18] for a more detailed discussion
on this issue.

In the last few years, this question of trying to find an algebraic analogue of the barrier results

2See Definition 2.5 for a formal definition.
3Throughout this paper, by a low degree polynomial family, we mean a polynomial family whose degree is polyno-

mially bounded in its number of variables.
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in [RR97] has received substantial attention. It was observed by various authors [AD08, Gro15,
FSV18, GKSS17] that most of the currently known proofs of algebraic circuit lower bounds fit into
a common unifying framework, not unlike that in [RR97], although of a more algebraic nature.
Indeed, these proofs also implicitly go via defining a property for the set of all polynomials and
using this property to separate the hard polynomial from the easy ones. Moreover, the notions of
largeness and constructibility in Definition 1.1 also seem to extend to these proofs.

We now discuss this framework in a bit more detail. The key notion here is that of an equation
for a set of polynomials.

Definition 1.2 (Equations for a set of polynomials). For some n, d ∈ N, let Cn,d be a set of n-variate
polynomials of total degree at most d; i.e. Cn,d ⊆ F[x]≤d.

Then, for N = (n+d
n ), a nonzero polynomial PN(Z) is said to be an equation for Cn,d if for all f (x) ∈

Cn,d, we have that PN(coeff( f )) = 0, where coeff( f ) is the coefficient vector of f . ♢

The definition naturally extends to a class of polynomial families, as opposed to just a set of
polynomials as defined above. In particular, suppose that C is a class of polynomial families
{{ fn} : fn ∈ Cn,dn}, and {PN} is a polynomial family. Then, the family {PN} is said to be a family
of equations for C if PN(n) is an equation for Cn,dn for all large enough n, for N(n) := (n+dn

n ). That
is, there is some n0 such that for all n ≥ n0 the polynomial PN(n) is an equation for Cn,dn .

Intuitively, non-vanishing of an equation (for a set C) on the coefficient vector of a given poly-
nomial f is a proof that f is not in C. We note that the equations for a set C evaluate to zero not just
on the coefficient vectors of polynomials in C but also on the coefficient vectors of polynomials
in the Zariski closure of C. This framework comes up very naturally in the context of algebraic
geometry (and geometric complexity theory), where it is often geometrically nicer to work with
the variety obtained by taking the Zariski closure of a complexity class.

Getting our hands on an equation of a variety gives us a plausible way to test and certify
non-membership in the variety, in other words, to prove a lower bound for the corresponding
complexity class. Thus, families of equations for a class gives an algebraic analogue of the notion
of natural properties useful against a class in [RR97]. Moreover, since a nonzero polynomial does not
vanish very often on a random input from a large enough grid, it follows that a nonzero equation
for a set C will be nonzero on the coefficient vector of a “random polynomial”. Here by a random
polynomial we mean a polynomial whose coefficients are independent and uniformly random el-
ements from some large enough set in the underlying field. With appropriate quantitative bounds,
this observation can be formalized to give an appropriate algebraic analogue of the notion of large-
ness. Lastly, the algebraic circuit complexity of the equation gives a natural algebraic analog of the
notion of constructibility. Intuitively, any algebraic circuit lower bound which goes via defining a
nonzero proof polynomial of polynomially bounded degree that can be efficiently computed by
an algebraic circuit is an Algebraically Natural Proof of a lower bound.

We now formally define an algebraically natural proof.

Definition 1.3 (Algebraically natural proofs [FSV18, GKSS17]). Let C be a class of polynomial families
{{ fn,d} : fn,d ∈ Cn,d}.
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Then, for a class D of polynomial families, we say that C has D-natural proofs if there is a family
{PN} ∈ D which is a non-trivial family of equations for C . ♢

In the rest of this paper, whenever we say a natural proof, without specifying the class D , we
mean a VP-natural proof.

Analogous to the abstraction of natural proofs for Boolean circuit lower bounds, this framework
of algebraically natural proofs turns out to be rich and general enough that almost all of our current
proofs of algebraic circuit lower bounds are in fact algebraically natural, or can be viewed in
this framework with a little work [Gro15]. Thus, this definition seems like an important first
step towards understanding the strengths and limitations of many of our current lower bound
techniques in algebraic complexity.

The immediate next question to ask is whether algebraically natural proofs are rich enough to
give strong algebraic circuit lower bounds. This can naturally be worded in terms of the complex-
ity of equations for the class VP as follows.

Question 1.4. For every constant c > 0, does there exist a nonzero polynomial family {PN,c} in VP such
that for all large enough n, the following is true?

For every family of polynomials { fn} in VP, such that fn is an n variate polynomial of degree
nc, P(c)

N vanishes on the coefficient vector of fn for N = (n+nc

n ).

The works [FSV18] and [GKSS17] argue that under an appropriate (but non-standard) pseudo-
randomness assumption, the answer to the question above is negative, i.e., algebraically natural
proof techniques cannot be used to show strong lower bounds for algebraic circuits. To discuss
this pseudorandomness assumption formally, we need to define succinct hitting sets.

Definition 1.5 (Succinct hitting sets for a set of polynomials). For some n, d ∈ N, let Cn,d be a set of
n-variate polynomials of total degree at most d; that is, Cn,d ⊆ F[x]≤d.

Then for N = (n+d
n ), we say that a set of N variate polynomials DN has Cn,d-succinct hitting sets if

for all nonzero P(Z) ∈ DN , there exists some f ∈ Cn,d such that PN(coeff( f )) ̸= 0. ♢

As with Definition 1.2, this definition naturally extends to polynomial families (see Defini-
tion 2.16).

It immediately follows from these definitions that non-existence of D-natural proofs against
a class C is equivalent to the existence of C -succinct hitting sets for the class D . Forbes, Shpilka
and Volk [FSV18] showed that for various restricted circuit classes C and D , the class D has C

succinct hitting sets. Or equivalently, lower bounds for C cannot be proved via proof polynomial
families in D . However, we already have super-polynomial lower bounds against these classes
C , making the evidence weak. Further, this question has remained unanswered for more general
circuit classes C and D . In particular, if we take both C and D to be VP, we do not seem to have
significant evidence on the existence of VP-succinct hitting sets4 for VP.

In [FSV18], the authors observed that showing VP succinct hitting sets for VP would imme-
diately imply non-trivial deterministic algorithms for polynomial identity testing which, via well

4The definition of VP-succinct hitting sets (Definition 2.19) is perhaps slightly non-intuitive.
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known connections between algebraic hardness and derandomization, will in turn imply new
lower bounds [HS80a, KI04]. Thus, the problem of proving an unconditional barrier result for
algebraically natural proof techniques via this route seems as hard as proving new circuit lower
bounds! It is, however, conceivable that one can show such a barrier conditionally. And in some
more structured settings, such as for the case of matrix completion, such results are indeed known
[BIJL18]. However, Question 1.4 remains open. In particular, even though many of the struc-
tured subclasses of VP have low degree equations which are very efficiently computable, perhaps
hoping that this extends to richer and more general circuit classes is too much to ask for?

1.3 Our results

We are now ready to state our results. Our first set of results can be viewed as evidence towards
the efficacy of natural techniques for proving lower bounds against VP, and possibly even VNP.

Equations for polynomials in VP with coefficients of small complexity

We first show that over the field of complex numbers, there are efficiently computable equations
for the set of polynomials in VP that have small coefficients. Here for a field F, VPF denotes the
class VP where the coefficients are from the field F.

Theorem 1.6. Let c > 0 be any constant. There is a polynomial family {P(c)
N } ∈ VPQ such that for

N(n) = (n+nc

n ), the following are true.

• For every t(n) = poly(n), for all large enough n, and every family { fn} ∈ VPC, where fn is an
n-variate, degree-nc, size-t(n) polynomial with coefficients in {−1, 0, 1}, we have that

P(c)
N (coeff( fn)) = 0 ,

where coeff( fn) is the coefficient vector of fn.

• There exists a family {hn} of n variate polynomials and degree ≤ nc with coefficients in {−1, 0, 1}
such that for all large enough n,

P(c)
N (coeff(hn)) ̸= 0 .

We note that even though Theorem 1.6 is stated for polynomials with {−1, 0, 1} coefficients,
the theorem holds for polynomials with coefficients as large as N.

However, for brevity, we will confine the discussion in this paper to polynomials with coeffi-
cients in {−1, 0, 1}. We also note that the same statement holds over other fields of characteristic
zero as well. That is, the VPC in the above statement can be replaced with VPR or VPQ.

We also prove an analogous theorem for finite fields.

Theorem 1.7. Let F be any finite field, and let c > 0 be any constant. There is a polynomial family{
P(c)

N

}
∈ VPF such that for N(n) = (n+nc

n ), the following are true.
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• For every t(n) = poly(n), for all large enough n, and every family { fn} ∈ VPF, where fn is an
n-variate, degree-nc, size-t(n) polynomial, we have that

P(c)
N (coeff( fn)) = 0 .

• There exists a family {hn} of n variate polynomials and degree ≤ nc with coefficients in F such that
for all large enough n,

P(c)
N (coeff(hn)) ̸= 0 .

Equations for polynomials in VNP with coefficients of small complexity

Furthermore, we also prove analogous statements for the seemingly larger class VNP, as follows.

Theorem 1.8. Let c > 0 be any constant. There is a polynomial family {Q(c)
N } ∈ VPQ such that for

N(n) = (n+nc

n ), the following are true.

• For every t(n) = poly(n), for all large enough n, and every family { fn} ∈ VNPC, where fn is an
n-variate, degree-nc, size-t(n) polynomial with coefficients in {−1, 0, 1}, we have that

Q(c)
N (coeff( fn)) = 0 .

• There exists a family {hn} of n variate polynomials and ≤ nc with coefficients in {−1, 0, 1} such
that for all large n,

Q(c)
N (coeff(hn)) ̸= 0 .

As before, we note that the above theorem holds for polynomials with coefficients as large as
N and also holds over other fields of characteristic zero, like R or Q.

Theorem 1.9. Let F be any finite field and c > 0 be any constant. There is a polynomial family
{

Q(c)
N

}
∈

VPF such that for N(n) = (n+nc

n ), the following are true.

• For every t(n) = poly(n), for all large enough n, and every family { fn} ∈ VNPF, where fn is an
n-variate, degree-nc, size-t(n) polynomial, we have that

Q(c)
N (coeff( fn)) = 0 .

• There exists a family {hn} of n variate polynomials and degree ≤ nc with coefficients in F such that
for all large n,

Q(c)
N (coeff(hn)) ̸= 0 .
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In fact, we show that the existence of efficient hitting sets for any class is sufficient to give
efficient equations for its subclass that contains polynomials with bounded coefficients. This is
formalized in Theorem 4.3 for fields of characteristic zero, and in Theorem 4.1 for finite fields.

Conditional hardness of equations for VNP

Over fields of characteristic zero, we also show that assuming the Permanent is hard enough,
the constraint of bounded coefficients in Theorem 1.8 is necessary for efficient equations for VNP.
More formally, we show the following.

Theorem 1.10 (Conditional Hardness of Equations for VNP). Let ε > 0 be a constant. Suppose that
the permanent family Permm requires circuits of size 2mε

.
Then, VP has VNP-succinct hitting sets. Therefore, there are no VP-natural proofs for VNP.

We remark that the above theorem holds over any field of characteristic zero. For our proofs,
we will work with complexes for better readability.

Remark 1.11. Extending the result in Theorem 1.10 to hardness of equations for VP, even under the as-
sumption that Permanent is sufficiently hard, is a fascinating open question. Such an extension would
answer the main question investigated in [FSV18, GKSS17] and show a natural-proofs-like barrier for a
fairly general family of lower bound proof techniques in algebraic complexity. Our proof of Theorem 1.10
however, crucially relies on some key properties of VNP, and does not appear to extend to VP. ♢

1.4 Discussion and relations to prior work

As is evident from our results, the main message (in our opinion) is that we do not have com-
pelling evidence to rule out, or accept, the efficacy of algebraically natural proofs towards proving
strong lower bounds for rich classes of algebraic circuits. In fact, our results seem to provide some
evidence for both sides.

We first discuss the results that suggest an affirmative answer to Question 1.4. Many of the
families of polynomials commonly studied in algebraic complexity have integer coefficients with
absolute values bounded by 1, and fall in the setting of Theorem 1.6. Moreover, the condition of
computing polynomials with bounded coefficients is a semantic condition on a model, in the sense
that even though the final output of the circuit is required to have bounded coefficients, the circuit
is free to use arbitrary constants from C in the intermediate computation. Thus, it is conceivable
that we might be able to prove a super-polynomial lower bound on the algebraic circuit size for the
permanent polynomial via an algebraically natural proof constructible in VP, thereby separating
VP and VNP. However, since analogues of Theorem 1.6 and Theorem 1.7 are also true for VNP,
any such separation will have to rely on more fine-grained information on the equations, and not
just their degree and algebraic circuit size. Unfortunately, our proofs are all existential and do not
give a sense of what the polynomial families {P(c)

N } (or {Q(c)
N }) might look like.
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We also note that in the light of some prior works, these results are perhaps a bit surprising.
The classes of polynomials in VP and VNP with small coefficients (or over finite fields), are seem-
ingly rich and complex, and the theorems here show — unconditionally — that they have equa-
tions which are also efficiently computable. Furthermore, these equations are a rather straight-
forward consequence of the existence of efficient hitting sets, as shown in Theorems 4.1 and 4.3.
As discussed earlier, the existence of efficient equations is known to be true for many structured
subclasses of algebraic circuits (for example, homogeneous circuits of depth 3 and 4, multilinear
formulas, polynomials of small Waring rank). However, it is unclear if this property extends to
more general circuit classes, like VP or VNP.

On the other hand, Theorem 1.10 shows that under the widely believed assumption that Perm
is exponentially hard, the bound on coefficients is crucial, at least for the class VNP. It is unclear if
a similar situation is also true for VP. However, even if we were to believe that there are efficiently
computable equations for VP, it is unclear if the existence of such equations implies VP ̸= VNP.

In the other direction, suppose we were to assume that VP and VNP are indeed different, is it
then reasonable to expect an efficiently computable equation exhibiting such a separation? Using
Theorem 1.10, we now have that if Perm is exponentially hard, then any efficiently computable
equation for VP will necessarily not be an equation for VNP, thus yielding an “algebraically natural
proof” that separates VP and VNP.

We will now briefly go over some works related to Question 1.4. As mentioned earlier, the
focus of most of the prior works has been to look for evidence that the answer to Question 1.4 is
negative, i.e. VP does not have efficiently computable and low degree equations. We hope that
the results in this paper highlight that the answer is not so clear.

Relations to prior work. Following the work of Forbes, Shpilka, Volk [FSV18] and Grochow,
Kumar, Saks and Saraf [GKSS17], much of the research on the problem, of whether algebraically
natural proofs exist, has focused on proving the non-existence of efficiently computable equations
for VP, and this line of work has made interesting progress in this direction for many structured
and special instances of problems of this nature. Forbes, Shpilka and Volk [FSV18] uncondition-
ally ruled out equations for depth-three multilinear formulas computable by certain structured
classes of algebraic circuits using this connection. However, this does not imply anything about
complexity of equations for general classes of algebraic circuits such as VP and VNP.

In the context of proving lower bounds against algebraic circuits, Efremenko, Garg, Oliveira
and Wigderson [EGOW18] and Garg, Makam, Oliveira and Wigderson [GMOW19] explore limita-
tions of proving algebraic circuit lower bounds via rank based methods. In particular, Efremenko
et al. [EGOW18] show that some of these rank based methods cannot prove lower bounds bet-
ter than Ωd(n⌊d/2⌋) on tensor rank (respectively, Waring rank) for a d-dimensional tensor of side
n. Building on [EGOW18], in [GMOW19], the authors demonstrate that one cannot hope to sig-
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nificantly improve the known lower bounds for tensor rank for d dimensional tensors by lifting
lower bounds on tensors in fewer dimensions. However, we note that a general algebraically nat-
ural proof of a lower bound does not necessarily fit into the framework of [EGOW18, GMOW19],
and so these limitations for the so-called rank methods do not seem to immediately extend to al-
gebraically natural proofs in general. As discussed earlier, in the light of the results here, it is
conceivable that we might be able to improve the state of the art for general algebraic circuit lower
bounds, using techniques that are algebraically natural.

Bläser, Ikenmeyer, Jindal and Lysikov [BIJL18] studied the complexity of equations in a slightly
different context. They draw connections between the existence of efficiently constructible equa-
tions of a variety and the problem of testing (non)membership in it and use the conditional hard-
ness of the (non)membership testing problem for certain varieties to rule out the existence of effi-
ciently computable equations for them. More precisely, they show that if all the equations for the
variety of matrices with zero permanent are constructible by small constant-free algebraic circuits,
then the non-membership problem for this variety can be decided in the class ∃BPP. Thus, unless
P#P ⊆ ∃BPP, the equations of this variety do not have small, low degree constant free algebraic
circuits. In a subsequent work ([BIL+19]), the results of [BIJL18] are generalized to min-rank or
slice-rank varieties. However, in the bounded coefficient setting (and over finite fields), our results
show that the contrary is true, and VP does have efficiently computable low degree equations. We
also note that the set-up in these papers differ from that in our paper, and that of [GKSS17, FSV18].
One way to interpret this difference is that [BIJL18] shows that “variety of small completion rank
tensors” cannot be “cut out” by efficient equations, whereas [GKSS17, FSV18] and our paper asks
if every equation for this variety requires large complexity.

A positive result on the complexity of equations of naturally-occurring varieties in algebraic
complexity appears in a recent work of Kumar and Volk [KV20] where they show polynomial
bounds on the degree of the equations of the Zariski closure of the set of non-rigid matrices and
small linear circuits over all large enough fields. However, we do not know if any of these low-
degree equations can be efficiently computed by an algebraic circuit.

For Boolean circuits, Chow [Cho11] shows a way of circumventing the natural proofs’ barrier
in [RR97] by providing (under standard cryptographic assumptions) an explicit almost natural proof
that is useful against P/ poly as well as constructive in nearly linear time, but compromises on the
largeness condition. Furthermore, Chow [Cho11] shows the unconditional existence of a natural
property useful against P/ poly (infinitely often) constructive in linear size that has a weakened
largeness condition. In some sense, Theorem 1.7 and Theorem 1.6 are analogous to the work of
Chow [Cho11], albeit in the algebraic world.

On the largeness criterion. In the definitions of algebraically natural proofs [GKSS17, FSV18],
the authors observe that in the algebraic setting, an analogue of the largeness criterion in Defi-
nition 1.1 is often available for free; the reason being that a nonzero equation for any class of
polynomials vanishes on a very small fraction of all polynomials over any sufficiently large field.
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However, this tradeoff becomes a bit subtle when considering polynomials over finite fields, or
polynomials with bounded integer coefficients. In particular, as we observe in the course of the
proofs of our results, we still have a sizeable chunk of polynomials whose coefficients will keep
{P(c)

N } (and {Q(c)
N }) nonzero, although this set is no longer a significant fraction of the set of all

polynomials.

1.5 Proof ideas

Constructible equations for polynomials with coefficients of small complexity

At a high level, the idea behind our results about constructible equations is to try and come up
with a non-trivial property of polynomials which every polynomial with a small circuit satisfies.
By a non-trivial property, we mean that there should exist (nonzero) polynomials which do not
have this property. The hope is that once we have such a property (that is nice enough), one can try
to transform this into an equation via an appropriate algebraization. The property that we finally
end up using is the existence of hitting sets for polynomials with small circuits.

A hitting set for a class C of polynomials over a field F is a set of points H, such that every
nonzero polynomial in C evaluates to a nonzero value on at least one point in H. We then turn this
property of not-vanishing-everywhere on H into an equation in some settings. In order to formalize
this, let us consider the map ΦH defined on the set of all polynomials, using the hitting set H of a
class C , that maps any given polynomial f to its evaluations over the points in H. It is clear from
the above observation that any nonzero polynomial in the kernel of ΦH is guaranteed to be outside
C . Thus, if there were a nonzero polynomial that vanishes on all polynomials f /∈ ker(ΦH), then
we would have an equation for C .

Moreover, if such a polynomial happened to have its degree and circuit complexity polynomi-
ally bounded in its number of variables, we would have our required upper bounds. However,
note that not being in the kernel of a linear map seems to be a tricky condition to check via a
polynomial (as opposed to the complementary property of being in the kernel, which can be easily
checked via a polynomial). To prove our theorems, we get past this issue in the setting of finite
fields, and for polynomials over C with bounded integer coefficients.

Over a finite field F, a univariate polynomial that maps every nonzero x ∈ F to zero and
vice versa, already exists in q(x) = 1 − x|F|−1. Therefore, for a given polynomial f , the equation
essentially outputs ∏h∈H q( f (h)). Clearly, for a polynomial f , ∏h∈H q( f (h)) is zero if and only
if f evaluates to a nonzero value on at least one point in H. To generalize this to other fields, we
wish to find a “low-degree” univariate q(x) that maps nonzero values to 0, and zero to a nonzero
value. We observe when the polynomials in C have integer coefficients of bounded magnitude
we can still obtain such a univariate polynomial, and in turn a non-trivial equation. In particular,
if q(x) were such a univariate, we essentially output ∏h∈H q( f (h)), for a given polynomial f . This
step relies on a simple application of the Chinese Remainder Theorem.

In order to show that the equations are non-trivial, in the sense that there exist polynomials
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with bounded integer coefficients which do not pass this test, we need to show that there are
nonzero polynomials with bounded integer coefficients which vanish everywhere on the hitting
set H. We show this via a well-known lemma of Siegel5, which uses a simple pigeon-hole ar-
gument to show that an under-determined system of homogeneous linear equations where the
constraint matrix has small integer entries has a nonzero solution with small integer entries.

As it turns out, our proofs do not use much about the class VP except for the existence of small
hitting sets for polynomials in the class (Theorem 4.3). In fact, even the existence of these hitting
sets essentially follows universal circuits or polynomials, for VP (Theorem 4.2). It is not hard to
observe that these properties are also true for the seemingly larger class VNP and hence the results
here also extend to VNP. We also note that, given the hitting set H explicitly, the construction of
the equation is completely explicit. In other words, the non-explicitness in our construction comes
only from the fact that we do not have explicit constructions of hitting sets for algebraic circuits.

VNP-succinct hitting sets for VP

As was observed in [FSV18, GKSS17], a lower bound for equations for a class of polynomials is
equivalent to showing the existence of succinctly describable hitting sets for this class. For our
proof of Theorem 5.8 we show that, assuming that the permanent is sufficiently hard, the coeffi-
cient vectors of polynomials in VNP form a hitting set for the class VP. The connection between
hardness and randomness in algebraic complexity is well known via a result of Kabanets and Im-
pagliazzo [KI04], and we use this connection for our proof, along with some additional ideas. It is
useful to note that the above-mentioned result of Kabanets and Impagliazzo [KI04] is essentially
an algebraic analogue of the hardness vs randomness paradigm introduced by Nisan and Wigder-
son [NW94] in the boolean world. We briefly describe a high level sketch of our proof in a bit more
detail now.

Kabanets and Impagliazzo [KI04] showed that using any explicit polynomial family { fn} that
is sufficiently hard, one can construct (a family of) hitting set generators for VP. That is, we can
construct a polynomial map Gen f : Fk → Ft that “fools” any small algebraic circuit C on t variables
in the sense that C(y1, y2, . . . , yt) is nonzero if and only if the k-variate polynomial C ◦ Gen f is
nonzero. In a typical invocation of this result, the parameter k is much smaller than t (typically
k = poly log t). Thus, this gives a reduction from the question of polynomial identity testing for t-
variate polynomials to polynomial identity testing for k-variate polynomials. Another related way
of interpreting this connection is that if { fn} is sufficiently hard then Gen f is a polynomial map
whose image does not have an equation with small circuit size. Thus, assuming the hardness of
the Permanent, this immediately gives us a polynomial map (with appropriate parameters) such
that its image does not have an efficiently constructible equation.

For the proof of Theorem 5.8, we show that the points in the image of the map GenPerm, can
be viewed as the coefficient vectors of polynomials in VNP, or, equivalently in the terminology in
[FSV18, GKSS17], that the Kabanets-Impagliazzo hitting set generator is VNP-succinct. To this end,

5A statement of the lemma can be found here. Refer to [Sie14] for details.
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we work with a specific instantiation of the construction of the Kabanets-Impagliazzo generator
where the underlying construction of combinatorial designs is based on Reed-Solomon codes.
Although this is perhaps the most well known construction of combinatorial designs, there are
other (and in some parameters, better) constructions known. However, our proof relies on the
properties of this particular construction to obtain the succinct description. Our final proof is fairly
short and elementary, and is based on extremely simple algebraic ideas and making generous use
of the fact that we are trying to prove a lower bound for equations for VNP and not VP.

On algebraic “PRFs” against VP: As said above, the main proof can be summarized as say-
ing that the Kabanets-Impagliazzo generator [KI04] applied on the symbolic permanent is VNP-
succinct. Informally, this states that if the symbolic permanent is exponentially hard, then the
coefficient vectors of polynomials in VNP “look random” to polynomials in VP. If the succinct-
ness of this (or any other) generator can be improved to VP, then this would be a definitive step
towards completely ruling out the existence of efficiently computable equations for VP.

1.6 Organization of the paper.

We begin with some notations and preliminaries in Section 2. In Section 3, we outline the exis-
tence of efficient hitting sets, over characteristic-zero fields, for any class that has a low-degree,
low-variate universal polynomials; VP and VNP are examples of such classes. Existence of efficient
hitting sets for VP and VNP over finite fields is outlined in Section 3.2. Note that all the arguments
in Section 3 are present in previous works, but the results over characteristic zero have not been
stated in this generality prior to this work, to the best of our knowledge. In Section 4, we use the
above results to first prove Theorems 1.6 to 1.9. We then show the conditional hardness of equa-
tions for VNP in Section 5. Finally, we provide some open questions that arise from our work, and
the prior literature around algebraic natural proofs in Section 6.

2 Notation and preliminaries

2.1 Notation and basics

• We use [n] to denote the set {1, . . . , n} and JnK to denote the set {0, 1, . . . , n}. We also use
N≥0 to denote the set of non-negative integers.

• As usual, we identify the elements of Fp with {0, 1, . . . , p − 1} and think of JnK as a subset of
Fp in the natural way for any n < p.

• We use boldface letters such as x, y to denote tuples, typically of variables. When necessary,
we adorn them with a subscript such as y[n] to denote the length of the tuple. We also use xe

to denote the monomial ∏ xei
i .
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• We use { fn}n∈N to denote families of polynomials. We drop the index set whenever it is clear
from context. For a given polynomial f we denote by deg( f ) its degree. For a polynomial
f (x, y, . . .) on multiple sets of variables, we use degx( f ), degy( f ), etc., to denote the degree
in the variables from the respective sets.

• We use F[x]≤d to denote polynomials over the field F in variables x of degree at most d, and
use x≤d to denote the set of all monomials in variables x of degree at most d.

• For a given polynomial f ∈ F[x]≤d and a monomial m ∈ x≤d, we use coeffm( f ) to refer to
the coefficient of m in f . We further use coeff( f ) to denote the vector6 of coefficients of f .

• We denote sets of polynomials and classes of polynomial families by two sets of calligraphic
letters. Sets are denoted by C, D, etc., and classes of families are denoted by C , D , etc.

We will require the notions of hitting sets and hitting set generators (HSGs) given below.

Definition 2.1 (Hitting Set). A set of points H is said to be a hitting set for a set of polynomials T , if for
each f ∈ T there exists an h ∈ H for which f (h) ̸= 0. ♢

Definition 2.2 (Hitting Set Generator (HSG)). A vector of polynomials (g1(y), . . . , gn(y)) is said to be
a hitting set generator for a set of n-variate polynomials T , if for each f ∈ T we have that the composed
polynomial f (g1(y), . . . , gn(y)) is nonzero. ♢

We will also be using the well-known Polynomial Identity Lemma.

Lemma 2.3 (Polynomial Identity Lemma [Ore22, DL78, Sch80, Zip79]). Let f ∈ F[x1, x2, . . . , xn] be
a nonzero polynomial of degree at most d and let S be a subset of F (or an extension of F). Then, the number
of zeroes of f on the grid Sn is at most d |S|n−1.

Corollary 2.4. For S = {0, 1, . . . , d}, the grid Sn is a hitting set for the set of all n-variate polynomials of
degree at most d.

2.2 Algebraic circuits and complexity classes

Let us first formally define algebraic circuits.

Definition 2.5 (Algebraic circuits). An algebraic circuit is specified by a directed acyclic graph, with
leaves (in-degree zero; also called inputs) labelled by field constants or variables, and internal nodes labelled
by + or ×. The nodes with out-degree zero are called the outputs of the circuit. Computation proceeds in
the natural way, where inductively each + gate computes the sum of its children and each × gate computes
the product of its children.

The size of the circuit is defined as the number of nodes in the underlying graph. ♢
6We do not explicitly mention the monomial ordering used for this vector representation, since all our statements

work for any monomial ordering.
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Definition 2.6 (Exponential sums of circuits). For an algebraic circuit C(x, y), the exponential sum of
C over y is defined as follows.

C̃(x) := ∑
α∈{0,1}|y|

C(x, y = α)

The size of such an exponential sum is said to be the sum of the size of C, and the number of “auxiliary”
variables y. Similarly, the degree of the exponential sum is simply the total degree (in x and y) of the
polynomial computed by C. For instance, the exponential sum C̃ has size equal to size(C) + |y|, and its
degree is the total degree of C(x, y). ♢

Definition 2.7 (Size of a polynomial). For a polynomial f (x), the circuit-size of f is defined as the size
of the smallest circuit that computes it. It is denoted as CircuitSize( f ).

Similarly, the exponential-sum-size of f is defined as the size of the smallest exponential sum that
computes it. This is denoted by ExpSumSize( f ). ♢

2.2.1 Polynomial families and their complexity

In order to study the asymptotic cost of computing polynomials, we work with the families of
polynomials that they naturally define (e.g. {detn} is the family of n × n determinants for all
natural n). We formally define polynomial families and their complexity for clarity.

Definition 2.8 (Polynomial families). For a set of variables x and a field F, a family of polynomials
within F[x], denoted by { fn}N (or simply { fn}), is a set of polynomials indexed by n ∈ N such that the
n-th polynomial fn depends on at most n variables for all n ∈ N.

We shall denote the collection of all such polynomial families using P . ♢

Remark 2.9. It is more common to work with what are called ‘p-bounded families’, where the number of
variables that the polynomials in the family { fn} depend on, grows polynomially with the index n. We
choose the stricter definition above for clarity, and brevity of our statements. More importantly, all the
contents of this paper can be translated to the language of p-bounded families. ♢

The main focus of this work is going to be families of polynomials in which the degree grows
polynomially with the number of variables, called low-degree polynomial families.

Definition 2.10 (Low-degree polynomial families). For a function d : N → N, we define the class of
all degree-d polynomial families as follows.

Pd := {{ fn} ∈ P : ∀n, deg( fn) ≤ d(n)}

The collection of low-degree polynomial families is then naturally defined as the union of Pd’s over
all polynomial functions d.

Plow−deg :=
⋃

c∈N

Pnc . ♢
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Note that every family in Plow−deg implicitly fixes a constant c > 0 so that the family belongs
to the class Pd where d : n 7→ nc. A helpful feature of Pd is that for each { fn} in Pd, the length of
the coefficient vector of the nth polynomial fn is exactly (n+d(n)

n ) and therefore is purely a function of n.
This makes it easier to handle equations for sets of polynomials, which is the central subject of our
work. Therefore, we will always work with specific subclasses of Pd for a fixed d while dealing
with equations, and this choice of d will be mentioned explicitly whenever it is not completely
clear from the context.

Complexity classes of polynomial families

We can now define classes of low-degree families that are efficiently expressible using circuits and
exponential sums.

Definition 2.11 (Computable families). For functions s : N → N and d : N → N, we define the class
of degree-d families that are computable by size s circuits as follows.

Circuitd,s := {{ fn} ∈ Pd : ∃n0 ∈ N, ∀n > n0, CircuitSize( fn) ≤ s(n)}

When d and s are polynomials, we shall alternatively refer to this class as VPd,s. ♢

Definition 2.12 (Definable families). For functions s : N → N and d : N → N, we define the class of
degree-d families that are expressible by exponential sums of size and degree s, as follows.

ExpSumd,s := {{ fn} ∈ Pd : ∃n0 ∈ N, ∀n > n0, ExpSumSize( fn) ≤ s(n)} ♢

For polynomials d, s, we shall sometimes refer to this class as VNPd,s.

We now define the familiar classes VP and VNP more formally, specifically to help the forth-
coming discussion about families of equations for these classes.

Definition 2.13 (VP from first principles). For a polynomially bounded d : N → N, we denote by
VPd, the class of all degree-d polynomial families that are efficiently computable using algebraic circuits, as
follows.

VPd := ∪e∈NVPd,ne = ∪e∈N Circuitd,ne

The collection of all efficiently computable low-degree polynomial families denoted by VP, is then natu-
rally defined as follows.

VP := ∪c∈NVPnc ♢

Definition 2.14 (VNP from first principles). For a polynomially bounded d : N → N, we denote by
VNPd, the class of all degree-d polynomial families that are efficiently definable using exponential sums, as
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follows.

VNPd := ∪e∈NVNPd,ne = ∪e∈N ExpSumd,ne

The collection of all efficiently definable low-degree polynomial families denoted by VNP, is then natu-
rally defined as follows.

VNP := ∪c∈NVNPnc ♢

Dependence on the field. All the definitions discussed so far can be naturally instantiated for
any field F. We give a short summary for clarity.

• A polynomial family { fn} over a field F is a family in which the coefficients of fn are ele-
ments in F for all n.
Similarly, we can then define PF

d to be the class of degree-d families over F.

• A circuit is said to be over a field F, if all the constants appearing in the circuit are from F.
Exponential sums over F are defined similarly.

• We then define CircuitF
d,s and ExpSumF

d,s to be the analogous subclasses of families over the
field F, according to circuits and exponential sums over F.

• Finally, VPF is defined as the union over all c, e ∈ N, of the classes CircuitF
d,s, with d = nc

and s = ne.
Similarly, VNPF is the union of all ExpSumF

d,s.

An important point to note here is that VPF and VNPF are defined for a fixed field F. Particu-
larly, in the case of finite fields, the size of the field is a constant with respect to n. The underlying
field will usually be clear from the context, and will therefore not be mentioned unless required.

We will now formally define algebraic natural proofs and succinct hitting sets over character-
istic zero. Defining these for finite fields adds one more subtlety of largeness, which we address
after that.

2.2.2 Equations, natural proofs and succinct hitting sets over characteristic zero

To start with, we recall the definition of equations for a set of polynomials.

Definition 1.2 (Equations for a set of polynomials). For some n, d ∈ N, let Cn,d be a set of n-variate
polynomials of total degree at most d; i.e. Cn,d ⊆ F[x]≤d.

Then, for N = (n+d
n ), a nonzero polynomial PN(Z) is said to be an equation for Cn,d if for all f (x) ∈

Cn,d, we have that PN(coeff( f )) = 0, where coeff( f ) is the coefficient vector of f . ♢

Observe that any class C ⊆ Pd naturally defines a set of n-variate, degree-d(n) polynomials:
C (n) = { fn : { fn} ∈ C }. We shall use this piece of notation in order to define the concept of
natural proofs for a class of polynomial families.
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Definition 2.15 (Natural proofs for a class of families). For some functions d, D : N → N, and classes
C ⊆ Pd, D ⊆ PD, we say that a family {PN} is a D-natural proof for C , if:

• {PN} ∈ D , and

• for all large enough n, PN is an equation for C (n) for N = (n+d(n)
n ). ♢

As first defined in the works of Forbes, Shpilka and Volk [FSV18], and Grochow, Kumar, Saks
and Saraf [GKSS17], we then get the following definition for ‘succinct hitting sets’ by essentially
negating the definition of natural proofs.

Definition 2.16 (Succinct hitting sets for a class of families). For functions d, D : N → N, and classes
C ⊆ Pd, D ⊆ PD, we say that C -succinct hitting sets exist for D , if the following is true.

For infinitely many n ∈ N, the set of coefficient vectors of C (n) is a hitting set for the set of
polynomials D(N) where N = (n+d(n)

n ). ♢

The following statement is therefore an immediate consequence of the definitions above.

Proposition 2.17. Over any field of characteristic zero, for classes C ∈ Pd and D ∈ PD, C has D-natural
proofs if and only if D does not have C -succinct hitting sets.

Handling VP, VNP. We now instantiate the definitions of natural proofs and succinct hitting sets
for the specific cases of VP and VNP. This needs a bit of care because both VP and VNP are col-
lections of countably many classes of polynomial families, each containing polynomials families
of a specific degree. Thus, a formal definition of say, “VP-natural proofs for VP”, does not directly
follow from Definition 2.15, and one has to rely on the purpose of defining the concept, which is
that of analyzing the power of known techniques in the context of proving non-membership in
VP. This leads us to the following definitions.

Definition 2.18 (VP-natural proofs for VP). For polynomially bounded functions d, s, D, S : N → N,
we say that a family {PN} is a VPD,S-natural proof for VPd,s, if:

• {PN} ∈ VPD,S, and

• for all large enough n, PN is an equation for VPd,s(n) for N = (n+d(n)
n ).

We say that VP-natural proofs exist for VP if the following is true.

For any d(n) ∈ poly(n), there exist D(N), S(N) ∈ poly(N), and a family {PN}, such that
for every s(n) ∈ poly(n), {PN} is a VPD,S-natural proof for VPd,s.

In other words, for every degree-function d(n), there is a single family
{

P(d)
N

}
∈ VP, that is a family

of equations for all of VPd = ∪sVPd,s. ♢

Two important aspects of this definition must be noted.
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• The proof family {PN} may depend on the degree-function d(n).

If a polynomial PN vanishes on the coefficient vector of an n-variate degree-d polynomial f ,
then the length of the coefficient vector should match the arity of the equation, and therefore
N = (n+d

d ). Therefore, it is inevitable to see a dependence between N and the degree-function
d(n).

• The proof family {PN} must not depend on the size-function s(n).

This is crucial for a proof that yields a super-polynomial lower bound. That is, if the proof
family were to depend on the size-function s(n), it will only yield size-s lower bounds: arbi-
trarily large polynomial lower bounds when s(n) is a polynomial.

That said, the “prover” is allowed to select a suitable “largeness threshold n0” depending
on the size-function s(n). This is also easily justified. For instance, if PN vanishes on families
that have circuits of size ≤ nlog n, then this n0 would depend on when nlog n overshoots s(n).

We now define VP-succinct hitting sets for VP. Similar to the general definition, this has been
done so that “existence of VP-natural proofs for VP” and “existence of VP-succinct hitting sets for
VP” are direct logical negations of each other.

Definition 2.19 (VP-Succinct hitting sets for VP). For polynomially bounded functions d, s, D, S : N →
N, we say that VPd,s-succinct hitting sets exist for VPD,S, if the following is true.

For infinitely many n ∈ N, if N = (n+d(n)
n ) then the coefficient vectors of VPd,s(n) form a

hitting set for VPD,S(N).

We say that VP has VP-succinct hitting sets if there exists a degree-function d(n) ∈ poly(n), such
that for all choices of D(N), S(N)poly(N), there is a size-function s(n) ∈ poly(n), so that VPd,s-succinct
hitting sets exist for VPD,S. ♢

Proposition 2.20. VP has VP-natural proofs ⇐⇒ VP does not have VP-succinct hitting sets.

Remark 2.21. It can be argued that the term ‘VP-succinct hitting sets’ intuitively means that the hitting
set can be described efficiently using algebraic circuits. This hints towards a fixed pair of degree and size
functions working for all of VP7. Clearly, such a definition would be stronger than Definition 2.19. So a
‘succinct-hitting-sets-based-barrier’ towards ‘lower bounds via natural proofs’ in this intuitive sense is also
a barrier as per Definition 2.19. ♢

Moreover, all the succinct hitting sets described in the work of Forbes, Shpilka and Volk
[FSV18] are consistent with the stronger, “intuitive” definition, and therefore also imply succinct
hitting sets as per Definition 2.19. More generally, as we shall see in Section 2.3, the notion of
universal circuits lets us work with Definition 2.19 with a suitable change in parameters.

7“∃d(n), s(n)∀D(N), S(N) . . . ” as opposed to “∃d(n)∀D(N), S(N)∃s(n) . . .”.
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2.2.3 Algebraic natural proofs over finite fields

As pointed out before, the classes VPF and VNPF are defined only for a fixed field F, and hence
all of VPd(n) is a subset of FN . We then have to rule out “nonzero” equations that vanish on the
entire universe FN .

Taking a queue from the definition of (boolean) natural proofs (Definition 1.1), we include the
largeness criterion. We first define the notion of a large polynomial family.

Definition 2.22 (Large polynomial families). Let F = Fq be the finite field of size q. For a constant a,
a polynomial family {PN} over F is said to be a-large, if for all large enough N, there is a set W ⊆ FN of
size at least N−aqN such that PN(w) ̸= 0 for all w ∈ W.

A family {PN} is said to be large, if it is a-large for some a. ♢

Definition 2.23 (VP-natural proofs for VP (Finite fields)). Let F be a finite field. For polynomially
bounded d, s, D, S : N → N, we say that a family {PN} is a VPF

D,S-natural proof for VPF
d,s, if:

• {PN} ∈ VPF
D,S,

• for all large enough n, PN is an equation for VPF
d,s(n) for N = (n+d(n)

n ), and

• {PN} is large as per Definition 2.22.

We say that VPF-natural proofs exist for VPF if the following is true.

For any d(n) ∈ poly(n), there exists D(N), S(N) ∈ poly(N) and a family {PN}, such that
for every s(n) ∈ poly(n), {PN} is a VPF

D,S-natural proof for VPF
d,s.

In other words, for each degree-function d(n), there is a single family
{

P(d)
N

}
∈ VPF, that is a family

of equations for all of VPF
d = ∪sVP

F
d,s. ♢

By negating this definition, we get a seemingly weaker version of succinct hitting sets; in par-
ticular, the coefficient vectors are now only expected to hit the large families within VPF. Note that
hitting all families in “VPF(N)” is impossible for “VPF(n)”, simply because the constant-degree,
univariate polynomial (Zq

1 − Z1) vanishes over all of FN
q .

Definition 2.24 (VP-Succinct hitting sets for VP (Finite fields)). Let F be a finite field. For polynomially
bounded d, s, D, S : N → N, we say that VPF

d,s-succinct hitting sets exist for VPF
D,S, if the following is

true.

For any large family {PN} ∈ VPF
D,S, for infinitely many n ∈ N, if N = (n+d(n)

n ) then the
polynomial PN does not vanish on the coefficient vectors of VPd,s(n).

We say that VPF has VPF-succinct hitting sets if there exists a degree-function d(n) ∈ poly(n)
such that, for all choices of D(N), S(N) ∈ poly(N), there is a size-function s(n) ∈ poly(n) so that
VPF

d,s-succinct hitting sets exist for VPF
D,S. ♢
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2.3 Universal Circuits

A universal circuit is an algebraic circuit with the property that any polynomial which is efficiently
computable is a simple projection of it. The following lemma due to Raz shows the existence of
such circuits; for the sake of completeness, we also include a proof sketch.

Lemma 2.25 (Universal circuit [Raz10]). Let F be any field and n, s ≥ 1 and d ≥ 0. Then there
exists an algebraic circuit U of size poly(n, d, s) computing a polynomial in F[x1, . . . , xn, y1, . . . , yr] with
r ≤ poly(n, d, s) such that:

• degx(U(x, y)), degy(U(x, y)) ≤ poly(d);

• for any f (x) ∈ Circuitd,s(n), there exists an a ∈ Fr such that f (x) = U(x, a).

Proof. Let f be an n-variate degree d polynomial computable by a circuit C of size s. Using the clas-
sical depth reduction result due to Valiant et al. [VSBR83], f has a circuit C′ of size s′ = poly(n, d, s)
and depth ℓ = O(log d) with the following properties (see, e.g., [Sap15] for a complete proof).

• All the product gates have fan-in at most 5.

• C′ is layered, with alternating layers of sum and product gates.

• The layer above the leaves is of product gates, and the root is an addition gate.

We can therefore construct a layered universal circuit U for the given parameters n, d, s. The
circuit will have ℓ layers, with V1, V2, . . . , Vℓ being the layers indexed from leaves to the root. So Vℓ

has a single gate, which is the output gate of the circuit, and V1 has n + 1 gates, labeled with the
variables x1, . . . , xn and with the constant 1. All the gates in U are then connected using auxiliary
variables y, as follows.

• V2 has ≤ (n + 1)5 product gates, with each gate computing a unique monomial of degree at
most 5 in the variables x.

• For every odd i with 2 < i < ℓ, the layer Vi has s′ addition gates that are all connected to all
the gates in the layer Vi−1, with each of the wires being labeled by a fresh y-variable.

• For every even i with 2 < i < ℓ, the layer Vi has (s′
5) product gates, each one multiplying a

unique subset of 5 gates from Vi−1.

It is now easy to see that U has at most ℓ(ns′)5 gates, which is poly(n, d, s). Also, deg(U) ≤ 5ℓ,
which is poly(d); and |y| = r ≤ ℓ · (ns′)6, which is poly(n, d, s). Further, by the depth reduction
result [VSBR83], the circuit C′ for f can be obtained by setting the auxiliary variables y appropri-
ately. Since the choice of f was arbitrary, this finishes the proof.

Universal circuits let us move naturally from succinct hitting sets to ‘succinct hitting set gen-
erators’, which are defined as follows.
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Definition 2.26 (Succinct Hitting Set Generators). Let F be any field and n, d, N ∈ N be such that
N = (n+d

n ). For a set of N-variate polynomials D(N), a degree-d polynomial Gn ∈ F[y][x1, . . . , xn] (seen
as a polynomial only over the x variables) is said to be a succinct hitting set generator for D(N) if the
coefficient vector of Gn in (F[y])N is a hitting set generator for each polynomial Q ∈ D(N).

Naturally, for a class of families D , a polynomial family {Gn} is said to be a succinct hitting set gener-
ator (family) if, for infinitely many n ∈ N, we have that Gn is a succinct hitting set generator for D(N),
where n and N are related according to the degree of {Gn}.

When the family of generators {Gn} belongs to a class C , we say that D has a C -succinct hitting set
generator. ♢

Lemma 2.27 ([FSV18, GKSS17]). For functions d(n), s(n), D(N), S(N), if VPD,S has VPd,s-succinct
hitting sets then there is a family {Un}, where Un is the universal circuit for parameters n, d(n), s(n)
guaranteed by Lemma 2.25, that is a succinct hitting set generator for VPD,S.

Proof. Let {QN} ∈ VPD,S be a family. We will show that for infinitely many N ∈ N, the composi-
tion QN(coeff(Un)) gives a nonzero polynomial in y.

Firstly, since VPD,S has VPd,s-succinct hitting sets, there is some polynomial family fn ∈ VPd,s

such that for infinitely many N ∈ N, QN(coeff( fn)) ̸= 0. From Lemma 2.25 we get that for all large
enough n ∈ N, there is an assignment an for which Un(x, y = an) = fn(x).

Therefore, in particular, QN(coeff(Un(y = an))) = QN(coeff(Un))(y = an) ̸= 0 and this
implies that the composition QN(coeff(Un)) is a nonzero polynomial. This finishes the proof.

Lemma 2.28. Let t(n) ∈ nω(1) be any function. If VP has VP-succinct hitting sets, then there exists a
polynomially bounded d(n) such that the family of n-variate, degree-d(n) universal circuits of size t(n),
forms a succinct hitting set generator for VP.

As a result, VP has succinct hitting set generators of size poly(t(n)).

Proof. Let us assume that VP has VP-succinct hitting sets. Then there exists a d(n) ∈ poly(n) such
that for any functions D(N), S(N) ∈ poly(N), there exists a size-function s(n) ∈ poly(n) such
that VPD,S has VPd,s-succinct hitting sets.

Since t(n) ∈ nω(1), there is a finite n0 ∈ N, beyond which any polynomial in VPd,s(n) can
be simulated using the “(d(n), t(n))-universal circuit” Un. This means that Un is a hitting set
generator for VPD,S(N) infinitely often, which implies that the family {Un} is a succinct hitting
set generator family for VPD,S as per Definition 2.26.

As the above argument goes through for any s(n) ∈ poly(n), the family of “(d(n), t(n))-
universal circuits” is a succinct hitting set generator for VP. The complexity of this family follows
directly from Lemma 2.25.

2.4 Hardness-Randomness Connections

We will need the following notion of combinatorial designs (a collection of subsets of a universe
with small pairwise intersection).
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Definition 2.29 (Combinatorial designs). A family of sets {S1, . . . , SN} ⊆ [ℓ] is said to be an (ℓ, m, n)-
design if

• |Si| = m for each i ∈ [N]

• |Si ∩ Sj| < n for any i ̸= j. ♢

Kabanets and Impagliazzo [KI04] obtain hitting set generators from polynomials that are hard
to compute for algebraic circuits. The following lemma is crucial to the proof of Theorem 5.8.

Lemma 2.30 (HSG from Hardness [KI04]). Let {S1, . . . , SN} be an (ℓ, m, n)-design and f (xm) be an
m-variate, individual degree d polynomial that requires circuits of size s. Then for fresh variables yℓ, the
polynomial map KI-gen(N,ℓ,m,n)( f ) : Fℓ → Fn given by

( f (yS1), . . . , f (ySN )) (2.31)

is a hitting set generator for all N-variate polynomials with degree and circuit-size at most
(

s0.1

N(d+1)n

)
.

2.5 Some Algebraic-Geometric Concepts

We will also use some concepts from algebraic geometry. We provide some intuition for these,
which should be sufficient to understand the results here. For formal definitions of these concepts,
the reader can refer to any algebraic geometry text (e.g. [CLO07]).

• Closed set or Variety: A set of points S in Cn is called a closed set if there exists a finite set
of n-variate polynomials { f1, . . . , fr} such that S is exactly the set of common zeroes (roots)
of f1, . . . , fr. Such a set is sometimes referred to as a variety, and we shall do that for the
remainder of this section8.

• (Zariski) Closure of a set: The closure of a set S is the smallest variety that contains it.

• Dimension of a variety: Some varieties are clearly a single ‘component’; e.g. zeroes of the
polynomials

{
z, x − y2} in R3. In such a case, their dimension is the dimension of this com-

ponent (1, in the above example).
When a variety can be seen as a union of several components, its dimension is that of the
component with the largest dimension. For example, the dimension of the zeroes of the set
{xz, yz} in R3 is 2.

• Degree of a variety: The degree of a variety is the maximal (but finite) number of intersections
that it can have with a linear affine subspace (common zeroes of a set of linear polynomials).
Here, it might be helpful to think of zeroes of a single bivariate polynomial of the form
y − f (x) to understand the nomenclature.

We need the following two inequalities about the degree of intersections of varieties.

8Some works reserve the term ‘variety’ to refer to ‘irreducible’ closed sets; this distinction will not be important here.
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Lemma 2.32 (Bezout’s inequality [HS80a, Lemma 2.2]). Let V, W be varieties. Then the degree of their
intersection deg(V ∩ W) ≤ deg(V) · deg(W).

Any finite intersection of varieties is also a variety, and hence Lemma 2.32 can be used to
bound the degree of any finite intersection. However, when we additionally have a bound on the
dimension of one of the varieties, one can prove a different bound, which is sometimes tighter.

Lemma 2.33 ([HS80a, Proposition 2.3]). For varieties V1, V2, . . . , Vk, we have the following.

deg(V1 ∩ V2 ∩ · · · ∩ Vk) ≤ deg(V1) ·
(

max
i>1

deg Vi

)dim V1

Proof sketch. The proof is by induction. The base case k = 1 is trivial, so assume it is true for k − 1.
For simplicity, suppose that V1 is irreducible. Then either V1 ∩ V2 = V1, which takes us back to
the (k − 1) case. Or, W = V1 ∩ V2 has dimension that is at most (dim V1 − 1) and degree that is at
most deg(V1) · deg(V2), and again we can apply te induction hypothesis to W, V3, · · · , Vk. In the
general case, we apply the lemma to all the irreducible components of V1.

3 Existence of Hitting Sets

3.1 Over complex numbers

We state the results for complex numbers, but they extend as is for rationals and reals.
All the ideas required to prove the following theorem exist in previous works [HS80b, HS80a],

but the statements have not been worded in that generality before, so we state it here. We also
sketch the relevant proofs for completeness.

Theorem 3.1 (Universal polynomials imply hitting sets). Let C ⊆ C[x1, . . . , xn] be a set of polynomials
of degree at most d, and suppose for N = (n+d

d ) there is a universal polynomial U(y1, . . . , ym)(x) of total
degree D that generates all polynomials from C. That is, for each f ∈ C, there is an α ∈ Cm such that
U(y = α)(x) = f (x).

Then there exists a set H ⊂ [10m]n of size at most (D · (d + 1)2) which is a hitting set for C.

The key ingredient in proving the above theorem is the following theorem from the work of
Heintz and Schnorr [HS80a]. It bounds dimension and degree of the variety that contains the
coefficient vectors of a set of polynomials C in terms of the coefficient-generating-map for C, and
we note that even though the theorem is originally stated for polynomials that are computable by
small algebraic circuits, the proof only uses the properties of the coefficient generating map. It
closely follows the arguments in [HS80b, Lemma 1].

Theorem 3.2 (Rewording of [HS80a, Basic Theorem 3.2]). Let C ⊆ C[x1, . . . , xn] be a set of polyno-
mials of total degree at most d, and let N = (n+d

n ) be the length of the coefficient vectors of C.
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Suppose that there is a polynomial map Q : Cm → CN given by polynomials {Qe}, such that for each
f (x) ∈ C, there exists an α ∈ Cm, so that f (x) = ∑e Qe(α) · xe. Then for W ⊆ CN being the closure of
the set of coefficient vectors of C, we have that:

• The dimension, dim W ≤ m.

• The degree, deg(W) ≤ (degQ)dim W , where deg(Q) := maxe deg(Qe).

Proof sketch. That dim W ≤ m follows from the fact that it is the image of an m-variate map. Now,
let H1, H2, . . . , Hm be hyperplanes in CN such that the intersection W0 := W ∩ H1 ∩ H2 ∩ · · · ∩ Hm

is a finite set of size equal to deg(W).
Note that Q−1(H1),Q−1(H2), . . . ,Q−1(Hm) are hypersurfaces in Cm; that is, they are the zeroes

of multivariate polynomials in m variables, and their intersection is a finite set. Further, each of
these polynomials, and therefore the hyper-surfaces seen as varieties, have degree at most deg(Q).
We can now bound the size of their intersection, say V := Q−1(H1) ∩Q−1(H2) ∩ · · · ∩ Q−1(Hm),
using Lemma 2.32. Thus, |V| ≤ ∏i∈[m] deg(Q−1(Hi)) ≤ (degQ)m. Finally, as Q is a function (and
not a relation) from V to W0, we get that deg(W) ≤ |V| ≤ deg(Q)m.

Heintz and Schnorr [HS80a] then use these bounds to derive the existence of hitting sets of
small size and bit-complexity, as follows.

Theorem 3.3 (Rewording of [HS80a, Theorem 4.4]). Let C ⊆ C[x1, . . . , xn] be a set of degree-d polyno-
mials, and let Q : Cm → CN be a polynomial map such that the set S =

{
coeff( f ) : f ∈ C

}
is contained

inside its image: Q(Cm).
Then for b = deg(Q) · (d+ 1)2, and t = 10 ·dim(W), there exists a set of t points {a1, . . . , at} ⊆ [b]n

that is a hitting set for C.

Proof sketch. We work with sequences of points from [b]n of length t, instead of subsets of size t;
any “hitting sequence” clearly corresponds to a hitting set.

The key steps in the proof are then as follows.

• The variety of coefficient vectors of C: This is just a direct application of Theorem 3.2. The
resulting variety W has dim(W) ≤ m = t/10 and deg(W) ≤ deg(Q)m = deg(Q)t/10.

• The variety of “bad sequences”: We first work with t-length sequences of points from the
entire space Cn. So consider the (nt + N)-dimensional space, where we identify the first n · t
coordinates with sequences of t many, n-dimensional points, and the rest with coefficients of
polynomials. Within this space, consider the closure B of the set of points that contain “bad
sequences”. A sequence a1, . . . , at is bad, if there is a nonzero polynomial f ∈ C satisfying
f (a1) = · · · = f (at) = 0. Let B ⊂ Cnt be the Zariski closure of the set of all bad sequences.

Now, dim(B) ≤ t(n − 1) + dim W ≤ nt − t + t/10. To see this, consider a projection from B
to the first nt coordinates. The image of this projection — just the bad sequences — has di-
mension at most t(n − 1), since fixing some (n − 1) coordinates in each of the points would
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give us a univariate with finitely many choices for the last coordinate. Then, the dimen-
sion of the “pre-image” B can be at most the sum of the dimension of the image, and the
dimension of the other coordinates, which are contained in W.

In other (very informal) words, each bad sequence can essentially be “described by at most
(n − 1)t + dim W complex numbers”.

Further, we can also obtain a simple upper-bound on the degree of B. Consider t different
equations, each involving N + n coordinates. Each of these equations asserts that the point
given by the n coordinates is a zero of the polynomial specified by the other N coordinates.
Then, B is the intersection of the t hyper-surfaces given by these equations, and W. Since
each of these equations have degree (d + 1), the degree of W, by Lemma 2.32, is at most
deg(W) · (d + 1)t.

• Variety of bad sequences, inside the grid: With these bounds on B, we can now bound the
number of bad sequences within [b]n from above.

For each of the nt coordinates, consider the polynomial (zi,j − 1)(zi,j − 2) · · · (zi,j − b) of
degree b with i ∈ [t], j ∈ [n], and define its variety — a hyper-surface — Vi,j. Further, let
B′ := B ∩ V1,1 ∩ · · · ∩ Vt,n. Using Lemma 2.33, the degree of B′ is then at most

(degB) · bdimB ≤ (deg W) · (d + 1)t · bnt+t/10−t,

≤ deg(Q)t/10 · (d + 1)t · bnt · b−9t/10, (deg W ≤ deg(Q)t/10)

≤
(

b
(d + 1)2

)t/10

· (d + 1)t · bnt · b−9t/10,
(

deg(Q) =
b

(d + 1)2

)
≤ bnt · b−4t/5 · (d + 1)4t/5,

≪ bnt. (b/(d + 1) ≫ 1)

Since B′ is a finite set, this is a bound on its size. Thus, most of the sequences of t points
within [b]n are “hitting sequences”, and therefore give valid hitting sets for C.

We now prove Theorem 3.1 by combining Theorem 3.3 and elementary multivariate interpolation.

Theorem 3.1 (Universal polynomials imply hitting sets). Let C ⊆ C[x1, . . . , xn] be a set of polynomials
of degree at most d, and suppose for N = (n+d

d ) there is a universal polynomial U(y1, . . . , ym)(x) of total
degree D that generates all polynomials from C. That is, for each f ∈ C, there is an α ∈ Cm such that
U(y = α)(x) = f (x).

Then there exists a set H ⊂ [10m]n of size at most (D · (d + 1)2) which is a hitting set for C.

Proof. Due to Theorem 3.3, all that remains to be done is to obtain a coefficient-generating-map Q
from the given universal map U(y)(x). Such a map is a direct consequence of the following fact,
coming from multivariate interpolation.

Claim 3.4. Given an n-variate, degree-d polynomial f (x), any coefficient coeffe( f ) can be expressed as a
linear combination of its evaluations on the (d + 1)n points in the set [d + 1]n.
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The polynomial map Q is then just an appropriately ordered sequence of linear combinations
of the evaluations of U over [d + 1]n. As evaluations and linear combinations do not increase
the degree or the number of variables, we can invoke Theorem 3.3 with m = m and deg(Q) =

deg(U) = D. Therefore, the hitting set uses r ≤ 10m points from [t]n for t ≤ deg(U ) · (d + 1)2 ≤
D · (d + 1)2, as claimed.

We now show the existence of a “universal polynomial” for exponential sums. This is a fairly
easy extension of Lemma 2.25, as seen below.

Lemma 3.5 (Universal Polynomial for Exponential Sums). Let s ≥ n ≥ 1 and d ≥ 0. Then for
N = (n+d

n ) there exists a polynomial V(y1, . . . , ym)(x) with m ≤ poly(n, d, s) such that:

• deg(V) ≤ poly(s);

• for any f ∈ C[x1, . . . , xn] with degx( f ) ≤ d that can be written as an exponential sum of size s,
there exists a vector a ∈ Cm such that f (x) = V(y = a)(x).

Proof. Suppose fn(x) is an n-variate, degree-d polynomial that can be expressed as an exponen-
tial sum of size at most s. Then by Definition 2.6, there exists an s-variate, degree s polynomial
gs(x, z) ∈ Circuits,s(s) such that fn is obtained as a sum of the polynomials given by all the {0, 1}-
assignments to the z variables, in gs.

Using Lemma 2.25 for number of variables, degree and size, all bounded by s, we get a uni-
versal circuit U((x, z), y) for Circuits,s(s) with |y| = m ≤ sk for some constant k. Furthermore,
degy(U) ≤ sk.

The universal polynomial V(y)(x) is then just the sum of all the 2s−n many {0, 1}-assignments
to the z-variables in U, and hence deg(V) ≤ deg(U) = poly(s).

We are now ready to prove the existence of hitting sets for circuits and exponential sums,
whose sizes and bit-lengths, grow polynomially in the sizes of the corresponding models.

Lemma 3.6 (Hitting sets for efficiently computable polynomials [HS80a]). There are constants c and
e such that, there are (non-explicit) hitting sets H for Circuitd,s(n) (the set of all n-variate polynomials
with degree at most d that are computable by algebraic circuits of size at most s) with H ⊂ [(nds)c]n and
|H| = (nds)e.

Proof. First, Lemma 2.25 provides a universal polynomial U(x, y) for all the polynomials in the set
Circuitd,s(n) of degree at most (nds)c1 , and m := |y| ≤ (nds)c1 . Then, invoking Theorem 3.1 for
this polynomial map finishes the proof.

Replacing Lemma 2.25 in the above argument by Lemma 3.5 then gives us an analogous state-
ment for exponential sums.

Lemma 3.7 (Hitting sets for efficiently definable polynomials). There are constants c′ and e′ such that,
there are (non-explicit) hitting sets H for ExpSumd,s(n) with H ⊂ [(nds)c′ ]

n
and |H| = (nds)e′ .
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3.2 Finite fields: Hitting Sets for VP and VNP

Lemma 3.8 (Folklore (cf. Forbes [For14, Lemma 3.2.14])). Let F be a finite field with |F| ≥ d2. Let
C(n, d, s) be the class of polynomials in F[x1, . . . , xn] of degree at most d that are computable by fan-
in 2 algebraic circuits of size at most s. Then, there is a non-explicit hitting set for C of size at most
⌈2s · (log n + 2 log s + 4)⌉.

3.3 Finite fields: Hitting Sets for VNP

Lemma 3.9. Let F be a finite field with |F| ≥ d2. Let D(n, d, s) be the class of polynomials in F[x1, . . . , xn]

of degree at most d that are s-definable. Then, there is a non-explicit hitting set H for D(n, d, s) of size at
most ⌈2s · (3 log s + 4)⌉.

Proof. In order to prove the existence of a hitting set for the class D(n, d, s), we will need a bound
on the number of polynomials in the class D(n, d, s) as well as a bound on the size of an explicit hit-
ting set for the class of n-variate degree at most d polynomials. These two bounds are summarized
in the following claims, proofs of which can be found in [For14].

Claim 3.10 (Lemma 3.1.6 in [For14]). Let F be a finite field and n, s ≥ 1. There are at most (8n |F| s2)s

n-variate polynomials in F[x] computable by (single-output) algebraic circuits of size ≤ s and fan-in ≤ 2.

Claim 3.11 (Lemma 3.2.13 in [For14]). Let F be a finite field with |F| ≥ (1 + ε)d. Let C ⊆ F[x] be
a finite set of n-variate polynomials of degree < d. Then there is a non-explicit hitting set for C of size
≤
⌈
log1+ε |C|

⌉
.

Note that by definition, the number of n-variate polynomials that are s-definable is at most the
number of polynomials in C(s, s, s); the class of s-variate polynomials of degree ≤ s computable
by size s algebraic circuits of fan-in ≤ 2. Thus, by Claim 3.10, |D(n, d, s)| ≤ (8 |F| s3)s.

The rest of the proof follows exactly along the lines of the proof of Lemma 3.2.14 in [For14].
As |F| ≥ d2, we have d ≤ |F|, and so |F| ≥ (1 + ε)d for (1 + ε) =

√
|F|. Thus, using

ε =
√
|F| − 1 in Claim 3.11, we get that there is a non-explicit hitting set H for D(n, d, s) of size at

most ⌈
log√|F| |D(n, d, s)|

⌉
≤
⌈

log√|F|(8 |F| s3)s
⌉
=
⌈

s(2 + 2 log|F|(8s3))
⌉
=
⌈

s(2 + 6 log|F|(2s))
⌉

Finally, as |F| ≥ 2, we have

|H| ≤ ⌈s · (2 + 6 log(2s))⌉ = ⌈2s · (1 + 3 log(2s))⌉ = ⌈2s · (3 log s + 4)⌉ .

This completes the proof.
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4 Equations in the Bounded Coefficients setting

We will now prove our results about the existence of efficiently computable families of equations.
We begin with the results over finite fields, as their proofs are slightly simpler.

4.1 Over finite fields

Theorem 4.1 (Hitting sets give equations). Let F be a finite field of size q, and let n be large enough. For
some d ≥ 1, let K be an extension of F, of size at least d2. Let C ⊆ F[x1, . . . , xn] be a set of polynomials of
degree at most d, and let H ⊂ Kn be a hitting set for C, of size |H| = t.

Then, for N = (n+d
d ), there is an equation PN(Z1, . . . , ZN) ̸≡ 0 for C ′, with deg(PN) and size(PN)

at most 10 · q · N · t · (log d).

Proof. Let rd = [K : F] = a · log d, for some a ≤ 2. Note that the elements of K can also be
interpreted as vectors over F via an F-linear map Φ : K → Frd . We can then define for any
i ∈ [rd], Φi : K → F to be its projection to the i-th coordinate. That is, Φi : α 7→ (Φ(α))i for every
i ∈ [rd].

For N = (n+d
n ), let us index the set [N] by the set x≤d of n-variate monomials of degree at most

d. For a point a ∈ H, we define the vector eval(a) ∈ KN as eval(a)m = m(a) where m ∈ x≤d (that
is, the m-th coordinate is the evaluation of the monomial m at a). To get vectors over F instead, for
each i ∈ [rn], we shall define eval(a)(i) ∈ FN as eval(a)(i)m = Φi(m(a)).

We are now ready to define the polynomial PN .

PN(zm : m ∈ x≤d) := OR(z) · ∏
a∈H

 rd

∏
i=1

1 −
(

∑
m

zm · eval(a)(i)m

)|F|−1
 ,

where OR(z) =

(
1 − ∏

m∈x≤dn

(
1 − z|F|−1

m

))

Constructibility: Note that deg(PN) ≤ |F| · (N + (|H| · rd)) ≤ q · (N + t · 2 log d) and the above
expression immediately yields a circuit for PN of size that is at most 4 · q · t · rd · N for all large
enough N.

Usefulness: Now consider any polynomial f ∈ C, we will show that PN(coeff( f )) = 0.
For any polynomial g ∈ F[x1, . . . , xn] with deg(g) ≤ d, we have

P(coeff(g)) = OR(coeff(g)) · ∏
a∈H

 rd

∏
i=1

1 −
(

∑
m

coeff(g)m · eval(a)(i)m

)|F|−1
 ,

= OR(coeff(g)) · ∏
a∈H

(
rd

∏
i=1

(
1 − (Φi(g(a)))|F|−1

))
,
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=

1 if g ̸= 0 and g(a) = 0 for all a ∈ H,

0 if g = 0 or g(a) ̸= 0 for some a ∈ H.

If f = 0, then OR(coeff( f )) = 0. Else, since f ∈ C, the set H is a hitting set for fn. Therefore,
there is some point a ∈ Hn such that f (a) ̸= 0. Hence, {PN} vanishes on the coefficient vector of
every polynomial in C. Thus, PN is an equation for C.

Theorem 1.7. Let F be any finite field, and let c > 0 be any constant. There is a polynomial family{
P(c)

N

}
∈ VPF such that for N(n) = (n+nc

n ), the following are true.

• For every t(n) = poly(n), for all large enough n, and every family { fn} ∈ VPF, where fn is an
n-variate, degree-nc, size-t(n) polynomial, we have that

P(c)
N (coeff( fn)) = 0 .

• There exists a family {hn} of n variate polynomials and degree ≤ nc with coefficients in F such that
for all large enough n,

P(c)
N (coeff(hn)) ̸= 0 .

Proof. Fix c to be an arbitrary constant; we refer to the family
{

P(c)
N

}
as {PN} for ease of notation.

The family {PN} is defined by constructing polynomials PN for each n and N(n) using Theo-
rem 4.1; so let n be any large enough number. Let dn = nc, and sn = nlog n (in fact, sn can be any
function that is barely super-polynomial in n). Since the size of F is a constant with respect to n,
and we need fields of sufficiently large size for invoking Lemma 3.8, we work over an extension
Kn of F of size at least n2c and at most |F| · n2c. By Lemma 3.8, there are hitting sets in Kn

n for
Circuitdn,sn(n) of size at most s2

n; let Hn be such a hitting set.
We can now apply Theorem 4.1 for C = Circuitdn,sn(n), K = Kn and H = Hn of size t = s2

n, to
obtain PN that has size and degree that is at most 10 |F| · N · s2

n · (log dn) ≤ N2. The family {PN} is
therefore in VPF.

Usefulness against VPdn : Let { fn} ∈ VPdn,t(n) for some t(n) = poly(n), and n0 ∈ N be large
enough, and also be such that nlog n0

0 > t(n0). Then for all n ≥ n0, Hn contains a non-root of fn,
and hence PN vanishes on coeff( fn).

A remark on the largeness: From the definition of PN in the proof of Theorem 4.1, any nonzero
g ∈ F[x1, . . . , xn]≤dn such that g(a) = 0 for all a ∈ Hn will satisfy PN(coeff(g)) ̸= 0. If we interpret
the coefficients of g as indeterminates, each equation of the form g(a) = 0 introduces one homo-
geneous linear constraint in these N indeterminates, over the extension Kn. Each such constraint
can be interpreted as O(log n) homogeneous linear constraints, over F. Since |Hn| ≪ N, the set of
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g’s that are not annihilated by PN form a subspace of dimension at least N − O(|Hn| log n). Thus,
there are at least

(
|F|N−O(|Hn| log n) − 1

)
many g’s such that PN(coeff(g)) ̸= 0.

Theorem 1.9. Let F be any finite field and c > 0 be any constant. There is a polynomial family
{

Q(c)
N

}
∈

VPF such that for N(n) = (n+nc

n ), the following are true.

• For every t(n) = poly(n), for all large enough n, and every family { fn} ∈ VNPF, where fn is an
n-variate, degree-nc, size-t(n) polynomial, we have that

Q(c)
N (coeff( fn)) = 0 .

• There exists a family {hn} of n variate polynomials and degree ≤ nc with coefficients in F such that
for all large n,

Q(c)
N (coeff(hn)) ̸= 0 .

Proof. Note that the proof of Theorem 1.7 did not use any properties of VP apart from the existence
of hitting sets, which was given by Lemma 3.8. It is therefore easy to see that this theorem also
follows by using Lemma 3.9 instead, with basically the same asymptotic behaviors for the size,
degree, and even the largeness, of the family

{
Q(c)

N

}
.

4.2 Over rationals/complexes

We will prove the following general statement, which essentially says that the existence of “effi-
cient” (low-variate, low-degree) universal polynomials for any class C , yield efficient equations
for the subclass of C containing polynomial families with bounded coefficients.

Theorem 4.2 (Equations from universal polynomials). Let C ⊆ C[x1, . . . , xn] be a set of polynomials
of degree at most d, and suppose for N = (n+d

d ) there is a universal polynomial U(y1, . . . , ym)(x) of total
degree D that generates all polynomials from C. That is, for each f ∈ C, there is an α ∈ Cm such that
U(y = α)(x) = f (x).

Then for C ′ being the set of all polynomials in C with coefficients in {−1, 0, 1}, there is an equation
PN(Z1, . . . , ZN) ̸≡ 0 for C ′, with deg(PN), size(PN) = poly(N).

As mentioned earlier, the proof would also generalize in a straightforward manner for poly-
nomial families in C whose coefficients are bounded by N(n). We state this for coefficients in
{−1, 0, 1} just to avoid cumbersome notation.

Above theorem follows from Theorem 3.1 and the following theorem, which is the technical
core of our constructions over fields of characteristic zero: Theorem 1.6 and Theorem 1.8.

Theorem 4.3 (Equations from hitting sets). Let n be large enough, and let C ⊆ C[x1, . . . , xn] be a set of
polynomials of degree at most d, and let H ⊆ {1, 2, . . . , B}n be a hitting set for C of size t.
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Then, for N = (n+d
d ), and for C ′ being the set of all polynomials in C with coefficients in {−1, 0, 1},

there is an equation PN(Z1, . . . , ZN) ̸≡ 0 for C ′, with deg(PN) and size(PN) at most B4 · t · N4.

Proof. The proof will proceed similar to the proof of Theorem 1.7, with a careful use of the Chinese
Remainder Theorem.

Let ∆ = {−1, 0, 1}. For N = (n+dn
n ), let us index the set [N] by the set x≤d of n-variate monomi-

als of degree at most dn. For a point a ∈ Zn, we define the vector eval(a) ∈ QN as eval(a)m = m(a)
where m ∈ x≤dn (that is, the m-th coordinate is the evaluation of the monomial m at a). Therefore,
for any n-variate polynomial f of degree at most d, we have f (a) =

〈
coeff( f ), eval(a)

〉
, the inner-

product.
Note that for any n-variate polynomial f of degree at most d and coefficients in ∆, and any

a ∈ H, we have | f (a)| ≤ N · Bd, which unfortunately is exponential in the degree d. However, we
can work with some “proxy evaluations” by simulating Chinese Remaindering.

For any a ∈ H and a positive integer r, define the vector ẽvalr(a) as follows:

ẽvalr(a)m := (m(a) mod r) for all m ∈ x≤dn .

It is to be stressed that ẽvalr(a) is a vector over Q, whose entries are integers between 0 and r − 1.

Claim 4.4. Suppose f is a polynomial with integer coefficients, and a ∈ Zn. If f (a) ̸= 0 and | f (a)| ≤ M,
then there is some r ≤ 2(log M)2 such that〈

coeff( f ), ẽvalr(a)
〉
̸= 0 mod r.

Proof of claim. Let ℓ = log(M + 1), note that the LCM of the set [ℓ2] is at least 2ℓ > M. Since f (a)
is a nonzero integer with | f (a)| ≤ M, by the Chinese Remainder Theorem there is some prime
r ≤ ℓ2 such that f (a) ̸≡ 0 mod r.〈

coeff( f ), ẽvalr(a)
〉
≡
〈

coeff( f ), evalr(a)
〉

mod r

≡ f (a) mod r ̸≡ 0 mod r

Let M = N · Bd and ℓ = log(M+ 1). For any r ∈ [ℓ2], any a ∈ H, and any n-variate polynomial
f of degree at most d and coefficients from ∆, we have∣∣∣〈coeff( f ), ẽvalr(a)

〉∣∣∣ ≤ N · ℓ2 =: R.

We are now ready to define the polynomial family {PN}.

PN(zm : m ∈ x≤n) = OR(z) · ∏
a∈H

ℓ2

∏
r=2

Qr

(〈
z, ẽvalr(a)

〉)
,

where Qr(x) = ∏
i∈[−R,...,R]
i mod r ̸=0

(x − i),
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OR(z) = 1 − ∏
m∈x≤dn

(1 − zm)

Constructibility: For our setting of the underlying parameters, M ≤ N · Bd and thus ℓ ≤ n ·
d · B; and R ≤ N · (ndB)2 ≤ B2 · N log4 N. Therefore, PN is a polynomial of degree at most
B4 · t · N2 log9 N. Moreover, the above expression also shows that PN is computable by a circuit of
size at most B4 · t · N4. All these bounds hold for all large enough n.

Usefulness: Fix a polynomial fn ∈ C ′. We need to show that PN(coeff( fn)) = 0. Note that
we have OR(coeff( fn)) ̸= 0 if fn is nonzero, and 0 if fn = 0. Hence, it suffices to show that
PN(coeff( fn)) = 0 for nonzero fn.

Since the set H is a hitting set for C, we know that fn(a) ̸= 0 for some a ∈ H. Therefore, for
some r ∈ [ℓ2], we have that

〈
coeff( f ), ẽvalr(a)

〉
is a nonzero integer in {−R, . . . , R} that is not

divisible by r. Hence, we have

Qr

(〈
coeff( f ), ẽvalr(a)

〉)
= 0,

=⇒ PN(coeff( f )) = 0.

Thus, PN is an equation for C ′.

Theorem 1.6. Let c > 0 be any constant. There is a polynomial family {P(c)
N } ∈ VPQ such that for

N(n) = (n+nc

n ), the following are true.

• For every t(n) = poly(n), for all large enough n, and every family { fn} ∈ VPC, where fn is an
n-variate, degree-nc, size-t(n) polynomial with coefficients in {−1, 0, 1}, we have that

P(c)
N (coeff( fn)) = 0 ,

where coeff( fn) is the coefficient vector of fn.

• There exists a family {hn} of n variate polynomials and degree ≤ nc with coefficients in {−1, 0, 1}
such that for all large enough n,

P(c)
N (coeff(hn)) ̸= 0 .

Proof. Fix c to be an arbitrary constant; we refer to the family
{

P(c)
N

}
as {PN} for ease of notation.

The family {PN} is defined by constructing polynomials PN for each n and N(n) using Theo-
rem 4.3; so let n be any large enough number. Let dn = nc, and sn = nlog n (in fact, sn can be any
function that is barely super-polynomial in n). By Lemma 3.6, there is a hitting set Hn ⊆ [B]n for
Circuitdn,sn(n) of size at most s3e

n , for B = s3e
n for some constant e.

We can now apply Theorem 4.3 for C = Circuitdn,sn(n), and H = Hn of size t = s3e
n , to obtain

PN that has size and degree that is at most s15e
n · N4 ≤ N5 for all large n, for our setting of sn. The
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family {PN} is therefore in VPQ.

Usefulness against VPdn : Let { fn} ∈ VPdn,t(n) for some t(n) = poly(n), and n0 ∈ N be large
enough, and also be such that nlog n0

0 > t(n0). Then for all n ≥ n0, Hn contains a non-root of fn,
and hence PN vanishes on coeff( fn).

A remark on the largeness: From the definition of PN in the proof of Theorem 4.3, any nonzero
polynomial g ∈ F[x1, . . . , xn]≤dn such that g(a) =

〈
coeff(g), eval(a)

〉
= 0 for all a ∈ Hn, will sat-

isfy PN(coeff(g)) ̸= 0. In order to show that there are many such g’s with coefficients in {−1, 0, 1},
we use a pigeon-hole argument, which is essentially an instance of a lemma of Siegel [Sie14]. For
completeness, we include a sketch of the argument here.

Consider the map Γ : ZN → Z|Hn| defined as

Γ(zm : m ∈ x≤dn) := (⟨z, eval(a)⟩ : a ∈ Hn)

The map Γ is linear in the sense that Γ(z + z′) = Γ(z) + Γ(z′). Consider the restriction of Γ on just
{0, 1}N ; the range of Γ under this restriction is {−M, . . . , M}|Hn|, where M = N · Bd. Hence, by
the pigeon-hole-principle there must be some b ∈ {−M, . . . , M}|Hn| with at least 2N/(2M + 1)|Hn|

pre-images inside {0, 1}N . If h0 is any fixed preimage, then{
h − h0 ∈ {−1, 0, 1}N : h ∈ Γ−1(b) ∩ {0, 1}N

}
are all coefficient vectors of polynomials g ∈ Z[x1, . . . , xn]≤dn with coefficients in {−1, 0, 1} whose
coefficient vectors are not zeroes of PN .

It is worth mentioning that there are 3N possible polynomials in Z[x1, . . . , xn]≤dn with coeffi-
cients in {−1, 0, 1}. The above remark on the largeness shows that there are 2N−q(n) many poly-
nomials g such that PN(coeff(g)) ̸= 0; for some q(n) = nO(log n).

Theorem 1.8. Let c > 0 be any constant. There is a polynomial family {Q(c)
N } ∈ VPQ such that for

N(n) = (n+nc

n ), the following are true.

• For every t(n) = poly(n), for all large enough n, and every family { fn} ∈ VNPC, where fn is an
n-variate, degree-nc, size-t(n) polynomial with coefficients in {−1, 0, 1}, we have that

Q(c)
N (coeff( fn)) = 0 .

• There exists a family {hn} of n variate polynomials and ≤ nc with coefficients in {−1, 0, 1} such
that for all large n,

Q(c)
N (coeff(hn)) ̸= 0 .
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Proof. Again, the proof of Theorem 1.6 did not use any properties of VP apart from the existence
of hitting sets, which was given by Lemma 3.6. This theorem then follows by using Lemma 3.7 in-
stead, with essentially the same asymptotic behaviors for the size, degree, and even the largeness,
of the family

{
Q(c)

N

}
.

5 VNP-succinct hitting sets for VP when Permanent is hard

We will now show that if the Permanent is exponentially hard, then so are all the equations for
it. This is shown by constructing VNP-succinct hitting sets for VP. We first lay down the ideas
behind our construction in some detail, and then formalize those ideas in the later parts.

Constructing VNP-succinct hitting sets for VP. Let us assume that for some constant ε > 0 and
for all9 m ∈ N, Permm requires circuits of size 2mε

. Kabanets and Impagliazzo [KI04] showed
that for every combinatorial design D (a collection of subsets of a universe, with small pairwise
intersection) of appropriate parameters, the map

GenPerm(z) = (Perm(zS) : S ∈ D) ,

where zS denotes the variables in z restricted to the indices in S, is a hitting set generator for
circuits of size 2o(mε). Our main goal is to construct a efficient exponential sum F(y, z), such that

F(y, z) = ∑
S∈D

monS(y) · Perm(zS) (5.1)

where monS(y) is a bijective map between D and monomials of total degree ≤ d in y variables.
By choosing parameters carefully, this would immediately imply that any equation on N-

variables, for N = (n+d
d ), that vanishes on the coefficient vectors of polynomials in VNPd(n) (which

is the nth slice of polynomial families in VNPd) requires size ‘super-polynomial in N’.
To show that the polynomial F(y, z) in Equation 5.1 has an efficient exponential sum, we use a

specific combinatorial design. For the design D obtained via Reed-Solomon codes, every set in the
design can be interpreted as a univariate polynomial g of appropriate degree over a finite field.
The degree of g (say δ) and size of the finite field (say p) are related to the parameters of the design
D . Now,

F(y, z) = ∑
g∈Fp[v]

deg(g)≤δ

(
δ

∏
i=0

ygi
i

)
· Perm(zS(g)), (5.2)

where (g0, . . . , gδ) is the coefficient vector of the univariate polynomial g. Expressing F(y, z) in

9To be more precise, we should work with this condition for “infinitely often” m ∈ N and obtain that VNP does not
have efficient equations infinitely often. We avoid this technicality for the sake of simplicity and the proof continues to
hold for the more precise version with suitable additional care.
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Equation 5.2 as a small exponential sum requires us to implement the product
(

δ

∏
i=0

ygi
i

)
as a

polynomial when given the binary representation of coefficients g0, . . . , gδ via a binary vector t
of appropriate length (say r). This is done via the polynomial Mon(t, y) in Section 5.1 in a straight-
forward manner. Furthermore, we want to algebraically implement the selection zS for a set S in
the combinatorial design when given the vector g that represents the polynomial g corresponding
to S. This is implemented via the polynomial RS-Design(t, z) in Section 5.2. Finally, we have

F(y, z) = ∑
t∈{0,1}r

Mon(t, y) · Perm(RS-Design(t, z))

which is clearly a small exponential sum, as
{

Permp
}

is in VNP and polynomials Mon(t, y) and
RS-Design(t, z) are efficiently computable. We now provide rest of the details of our proof.

Some notation

We will be using the following additional pieces of notation for this section.

1. For a vector t = (t1, . . . , tr), we will use the shorthand t(a)
i,j to denote the variable t(i·a+j+1).

This would be convenient when we consider the coordinates of t as blocks of length a.

2. For integers a, p, we shall use Mod(a, p) to denote the unique integer ap ∈ [0, p − 1] such
that ap = a mod p.

As mentioned in the overview, the strategy is to convert the hitting set generator given in (2.31)
into a succinct hitting set generator. Therefore, we would like to associate the coordinates of (2.31)
into coefficients of a suitable polynomial. That is, using exponential sums, we would like to build
a polynomial of the form

g(y1, . . . , yℓ, z1, . . . , zt) = ∑
m∈y≤d

m · f (zSm),

with the monomials m ∈ y≤d suitably indexing into the sets of a combinatorial design. The above
expression already resembles an exponential sum, and with a little care this can be made effective.
We will first show that the different components of the above expression can be made succinct
using the following constructions.

5.1 Building monomials from exponent vectors

For n, r ∈ N, let a = ⌊r/n⌋, and define Monr,n(t, y) as follows.

Monr,n(t1, . . . , tr, y1, . . . , yn) =
n−1

∏
i=0

a−1

∏
j=0

(
t(a)
i,j y2j

i+1 + (1 − t(a)
i,j )
)

The following observation is now immediate from the definition above.
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Observation 5.3. For any (e1, . . . , en) ∈ JdKn, we have

Monr,n(Bin(e1), . . . , Bin(en), y1, . . . , yn) = ye1
1 · · · yen

n ,

where Bin(e) is the tuple corresponding to the binary representation of e, and r = n · ⌈log2 d⌉. Furthermore,
the polynomial Monr,n is computable by an algebraic circuit of size poly(n, r).

5.2 Indexing combinatorial designs algebraically

Next, we need to effectively compute the hard polynomial f on sets of variables in a combinato-
rial design, indexed by the respective monomials. We will need to simulate some computations
modulo a fixed prime p. The following claim will be helpful for that purpose.

Claim 5.4. For any i, b, p ∈ N≥0, there exists a unique univariate polynomial Qi,b,p(v) ∈ Q[v] of degree
at most b such that

Qi,b,p(a) =

1 if 0 ≤ a < b and a ≡ i (mod p),

0 if 0 ≤ a < b and a ̸≡ i (mod p).

Proof. We can define a unique univariate polynomial Qi,b,p(v) satisfying the conditions of the claim
via interpolation to make a unique univariate polynomial take a value of 0 or 1 according to the
conditions of the claim. Since there are b conditions, there always exists such a polynomial of
degree at most b.

For any n, b, p ∈ N≥0 with n ≥ p, define

Seln,b,p(u1, . . . , un, v) ≜
n

∑
i=1

ui · Qi,b,p(v).

Observation 5.5. For any n, b, p ∈ N≥0 with n ≥ p, for any 0 ≤ a < b, we have that

Seln,b,p(u1, . . . , un, a) = uMod(a,p) = ua mod p

The degree of Seln,b,p is at most (b + 1) and can be computed by an algebraic circuit of size poly(b).

Proof. From the definition of the univariate polynomial Qi,b,p(v) of degree b in Claim 5.4, Qi,b,p(a)
outputs 1 if and only if i = a mod p. Hence, Seln,b,p(u1, . . . , un, a) is ua mod p and is of degree at
most (b + 1).

And finally, we choose a specific combinatorial design to instantiate Lemma 2.30 with.

5.3 Reed-Solomon based combinatorial designs

For any prime p and any choice of a ≤ p, the following is an explicit construction of a (p2, p, a)-
combinatorial design of size pa, defined as follows:
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With the universe U = Fp ×Fp, for every univariate polynomial g(t) ∈ Fp[t] of degree
less than a, we add the set Sg =

{
(i, g(i)) : i ∈ Fp

}
to the collection.

Since any two distinct univariate polynomials of degree less than a can agree on at most a points,
it follows that the above is indeed a (p2, p, a)-design.

The advantage of this specific construction is that it can be made succinct as follows. For
r = a · ⌊log2 p⌋, let t1, . . . , tr be variables taking values in {0, 1}. The values assigned to t-variables
can be interpreted as a univariate over Fp of degree < a by considering t ∈ {0, 1}r as a matrix
with a rows and ⌊log2 p⌋ columns each 10. The binary vector in each row represents an element in
Fp. We illustrate this with an example.

t =

1 1 1
0 1 0
0 0 1
1 0 0
0 1 1



 −→

7
2
1
4
2




∼= g(v)

For p = 11, a = 5, g(v) = 7 + 2v + v2 + 4v3 + 2v4 ∈ F11[v],

t is a 5 × 3 matrix that encodes the coefficients of g(v).

Let z denote the p2 variables
{

z1, . . . , zp2

}
, put in into a p × p matrix. Let S be a set in the

Reed-Solomon based (p2, p, a)-combinatorial design. We want to implement the selection zS alge-
braically. In the following, we design a vector of polynomials that outputs the vector of variables(

z(p)
0,g(0) mod p, . . . , z(p)

p−1,g(p−1) mod p

)
. Note that as mentioned above the polynomial g can be speci-

fied via variables t1, . . . , tr. That is,

RS-Designp,a(t1, . . . , tr, z1, . . . , zp2) ∈ (F[t, z])p , for r = a · ⌊log2 p⌋,

RS-Designp,a(t1, . . . , tr, z1, . . . , zp2)i+1 = Selp,p3,p

(
z(p)

i,0 , . . . , z(p)
i,p−1, Ri,a,p(t)

)
, for each i ∈ Fp,

where Ri,a,p(t) =
a−1

∑
j=0

[(
ℓp−1

∑
k=0

t(ℓp)

j,k · 2k

)
· Mod(ij, p)

]
,

with ℓp = ⌊log2 p⌋ .

Observation 5.6. For any prime p, a ≤ p, and t ∈ {0, 1}r for r = a · ⌊log2 p⌋, we have

RS-Designp,a(t, z) =
(

zi,g(i) : i ∈ Fp

)
,

where g(v) ∈ Fp[v] is the univariate whose coefficient vector is represented by the bit-vector t. Furthermore,
the polynomial RS-Designp,a is computable by an algebraic circuit of size poly(p).

10Working with ⌊log2 p⌋ bits (as opposed to ⌈log2 p⌉) makes the proofs much simpler, and does not affect the size of
the design by much.
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Proof. Fix some t ∈ {0, 1}r. From the definition of Ri,a,p(t), it is clear that Ri,a,p(t) returns an
integer α such that g(i) = α mod p where t encodes the coefficients of the polynomial g(t) in
binary. Furthermore, since Mod(ij, p) is the unique integer c ∈ [0, p − 1] with c = ij mod p, it also
follows that Ri,a,p(t) is an integer in the range [0, p3]. Hence,

Selp,p3,p

(
z(p)

i,0 , . . . , z(p)
i,p−1, Ri,a,p(t)

)
= zi,g(i)

as claimed.

5.4 The VNP-succinct KI generator

We are now ready to show the VNP-succinctness of the Kabanets-Impagliazzo hitting set generator
family when using a hard polynomial family from VNP and Reed-Solomon based combinatorial
designs.

For a prime p and for the largest number m such that m2 ≤ p, we will use Perm[p] ∈ F[y[p]] to
denote Permm applied to the first m2 variables of y.

We now define the polynomial Fn,a,p(y[n], z[p2]) as follows.

Fn,a,p(y1, . . . , yn, z1, . . . , zp2) = ∑
t∈{0,1}r

Monr,n(t, y) · Perm[p](RS-Designp,a(t, z)) (5.7)

where r = a · ⌊log2 p⌋

It is evident from the above definition that the polynomial family
{

Fn,a,p(y, z)
}

n is in VNP, for
any p that is polynomially related to n, when seen as a polynomial only in the y-variables, with
coefficients from C[z].

From the construction, we have that

Fn,a,p(y1, . . . , yn, z1, . . . zp2) = ∑
e

ye · Perm[p](zSe),

where {Se} is an appropriate ordering of the Reed-Solomon based (p2, p, a)-combinatorial design
of size pa, described in Section 5.3.

5.5 Putting it all together

We are now ready to show that if the Permanent is exponentially hard, then any polynomial family
{PN} that vanishes on the coefficient vectors of all polynomials in the class VNP requires super-
polynomial size to compute it.

Theorem 5.8 (Conditional Hardness of Equations for VNP). Let ε > 0 be a constant. Suppose, for an
m large enough, we have that Permm requires circuits of size 2mε

.
Then there is a constant c, such that for n = mε/4, any d ≤ n and N = (n+d

n ), we have that ev-
ery nonzero polynomial P(x1, . . . , xN) of degree poly(N) that is an equation for the set VNPd(n), has
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size(P) ≥ Nc·mε
.

Proof. Let p be the smallest prime larger than m2; we know that p ≤ 2m2. We will again use
Perm[p] ∈ C[y[p]] to denote Permm acting on the first m2 variables of y. Therefore, if Permm requires
size 2mε

then so does Perm[p].
Consider the polynomial Fn,n,p(y[n], z[p2]) defined in (5.7), which we interpret as a polyno-

mial in y with coefficients in C[z]. The individual degree in y is at least d, and at most p. Let
F≤d

n,n,p(y[n], z[p2]) denote the polynomial obtained from Fn,n,p by discarding all terms whose total de-
gree in y exceeds d. By standard homogenization arguments, it follows that F≤d

n,n,p ∈ VNPd(n), since
Fn,n,p(y[n], z[p2]) is efficiently computable by exponential sums. Therefore,

F≤d
n,n,p(y, z) = ∑

deg(ye)≤d
ye · Perm[p](zSe),

where Se, for various e, is an appropriate indexing into a (p2, p, n)-combinatorial design of size
N. Since the individual degree in y of Fn,n,p was at least d, every coefficient of F≤d

n,n,p is Perm[p](zS)

for some S in the combinatorial design. In other words, the coefficient vector of F≤d
n,n,p is precisely

KI-genN,p2,p,n(Perm[p]).
Now suppose that P(x1, . . . , xN) is a nonzero equation for VNPd(n) of degree at most Ne for

some e that is independent of N. Then, in particular, it should be zero on the coefficient vec-
tor of F≤d

n,n,p(y, a) ∈ VNPd(n) for all a ∈ Cp2
. By the Polynomial Identity Lemma [Ore22, DL78,

Zip79, Sch80], this implies that P must be zero on the coefficient vector of F≤d
n,n,p(y, z) ∈ (C[z])[y],

where coefficients are formal polynomials in C[z]. Since the coefficient vector of F≤d
n,n,p(y, z) is just

KI-genN,p2,p,n(Perm[p]), the contrapositive of Lemma 2.30 gives that either size(P) or deg(P) has
to be at least,

size(Perm[p])
0.1

N · 2n >
size(Permm)0.1

N · 2n >
20.1mε

N · 2n

Since N = (n+d
n ) ≤ 22n ≪ 2mε

, this is at least Ncmε
for some constant c, for all large enough N.

Thus, if deg(P) was indeed at most Ne, then its size must be at least Ncmε
.

Concluding that VNP has no efficient equations

Theorem 1.10 (Conditional Hardness of Equations for VNP). Let ε > 0 be a constant. Suppose that
the permanent family Permm requires circuits of size 2mε

.
Then, VP has VNP-succinct hitting sets. Therefore, there are no VP-natural proofs for VNP.

Proof. We will show that for d(n) = n, there is no D(N) = poly(N) for which there are VPD-
natural proofs for the class VNPd. So suppose that {PN} is a family of equations for VNPd, that has
degree poly(N). This means that for all large enough n, and N = (n+d

n ), the polynomial PN vanishes
on the coefficient vectors of all polynomials in VNPd(n).
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However, Theorem 5.8 shows that for m large enough, if there is a constant ε > 0 for which
we have that size(Permm) ≥ 2mε

, then for n = mε/4 and any d ≤ n, the coefficient vectors of
polynomials in VNPd(n) form a hitting set for all N-variate, degree-poly(N) polynomials that
are computable by circuits of size poly(N). Now suppose the Permanent family is 2mε

-hard for
a constant ε > 0, which means that Permm is 2mε

-hard for infinitely many m ∈ N. Then using
Theorem 5.8, we can conclude that for any family {PN} ∈ VP, we must have for infinitely many n
that PN(coeff( fn)) ̸= 0 for some fn ∈ VNPd(n). Since the choice of {PN} ∈ VP was arbitrary, this
means that there are VNPd-succinct hitting sets for VP, for d = n.

Remark 5.9. Some recent results on algebraic circuit lower bounds, starting with [KSS14], involves
studying families of polynomials whose monomials come from a combinatorial design. A natu-
ral question is whether the membership of such polynomial families in VNP (often shown via
Valiant’s criterion, which in turn relies on the explicitness of the underlying designs) somehow
implies the VNP-succinctness of the KI generator in a blackbox manner. We do not know if such
a blackbox transformation exists. Nevertheless, our proof of VNP-succinctness of the KI genera-
tor proceeds along similar lines but crucially relies on the fact that the underlying combinatorial
designs were constructed via Reed-Solomon codes. In contrast to this, the VNP membership of
polynomial families based on combinatorial designs via Valiant’s criterion, as in [KSS14], only
seems to rely on the explicitness of the designs, and so, at least on the surface, appears to be less
dependent on the precise construction of the underlying combinatorial designs. ♢

6 Open questions

Some key directions that are open for further study can be categorized as follows.

Disproving the existence of natural proofs for VP. This would be equivalent to proving the ex-
istence of VP-succinct hitting sets for VP, analogous to Theorem 1.10. The key challenge
here is that we do not know any constructions of hitting sets for circuits that follow from
polynomial hardness.
This is necessary because coefficient-vectors of VP forming a hitting set for VP is equivalent
to the “evaluation vectors” of VP forming a hitting set for VP. The recent work of Andrews
and Forbes [AF22] talks about some of the challenges in constructing hitting sets with pa-
rameters similar to this. The question of “algebraic cryptography” (see e.g. [AD08]) alluded
to before, is also along the same lines.

Proving the existence of natural proofs. This would be an interesting development for any cir-
cuit class for which strong lower bounds are not known. Of course, such a result — unless
it proves a new lower bound — would have to rely on some believable “easiness assump-
tion”.
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A specific question could be to show that constant-free circuits (or formulas, ABPs) have
efficient equations without any restrictions on coefficients.

In this context, it can be shown (as a consequence of Lemma 2.27) that a version of Theo-
rem 1.6 which works for integer coefficients with large magnitudes, say exp((log N)log ∗N),
will imply VP-natural proofs for all of VP. The proof strategy for Theorem 1.6 gives equa-
tions with degree that is at least linear in the magnitude of the coefficients, and is therefore
unlikely to be useful for this purpose. It would therefore be interesting to know if there are
constructions that achieve a better dependence between degree and the magnitude of the
coefficients.

Designing non-natural lower bound strategies. This is a slightly vague question, in that almost
any concrete and general strategy for proving lower bounds that circumvents a possible
natural-proofs-barrier would be interesting.
In some sense, the recent breakthrough of Limaye, Srinivasan and Tavenas [LST21] provides
one such approach: reduce the lower bound question for C to that for some C ′, such that C ′

admits natural proofs. However, it is unclear if this can be pursued as a general strategy,
because this additionally requires non-trivial upper bounds (from C to C ′).
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